SoC Blockset™
User's Guide

7

MATLAB&SIMULINK

zzzzzz ¢ } MathWorkse



X B

How to Contact MathWorks

Latest news: www .mathworks. com

Sales and services: www.mathworks.com/sales_and_services
User community: www .mathworks.com/matlabcentral
Technical support: www . mathworks.com/support/contact_us
Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

SoC Blockset™ User's Guide
© COPYRIGHT 2019-2020 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See

www .mathworks . com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.

Revision History

March 2019 Online Only New for Version 1.0 (Release 2019a)
September 2019 Online only Revised for Version 1.1 (Release 2019b)
March 2020 Online only Revised for Version 1.2 (Release 2020a)


https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Contents

Create SoC Models

1]

What is Task Execution? .. .......... ... ... ... ... ... . .. 1-2
Task Execution Life Cycle .. ............ . ... .. .. 1-2
Taskand Thread . ....... ... 1-2

Event-Driven Tasks . ....... ... ... ... . . . . . . . . . . . 1-4
Create a Simulink Model with an Event Driven Task ................. 1-4

Timer-Driven Task . ... ........ ... .. . . . . . . . . e 1-8
Create a Simulink Model with an Timer Driven Task ................. 1-8

Kernel Latency . ............. ... . . i 1-12
Effect Kernel Latency on Task Execution ......................... 1-12

Task Duration . ... ....... ... .. 1-16
Approximation Using Parameterized Probability Distribution ......... 1-16
Approximation Using Calculated Probability Distribution ............ 1-17
Specification from Task Manager InputPort . ..................... 1-17
Replay of Recorded Task Execution Timing Data ................... 1-18

Value and Caching of Task Subsystem Signals ..................... 1-19

Memory and Register Data Transfers ............................ 1-20
Modeling Datapath with Memory Channel Block . .................. 1-20
Modeling Datapath with Register Channel Block ................... 1-21

AXI4-Stream Interface ... ........ ... ... ... .. . . i 1-23
Simplified Streaming Protocol . ............ .. ... . ... . ... ... 1-23
Ready Signal (Optional) ......... . ... i, 1-23

Simplified AXI4 Master Interface ................................ 1-25
Simplified AXI4 Master Protocol - Write Channel . ................. 1-25
Simplified AXI4 Master Protocol - Read Channel ................... 1-26

AXI4-Stream Video Interface ................. ... ... ... ... . L. 1-28
Streaming Pixel Protocol ... ....... ... .. .. . . . ... 1-28
Protocol Signals and Timing Diagrams . ......................... 1-28

Use Template to Create SoCModel .............................. 1-31
Create SoC Model Using SoC Blockset Template ................... 1-31
Template Structure . ......... ... .. . . . . e 1-32
Modify Project . . ... .. 1-32

HDMI Template . ............ .. . . .. i 1-35
Required Products .. ........ .. ... 1-35

iii



iv

2|

Contents

Template Structure .. ........ .. ... . 1-35
Modify Project . . ... ..o 1-35
Frame Buffer with HDMI Template . ... .......................... 1-38
Required Products .. ....... ... .. 1-38
Template Structure .. ........ .. ... 1-38
Modify Project . . ... .. 1-39
Stream from FPGA to Processor Template . ....................... 1-41
Required Products . ......... ... ... 1-41
Template Structure . ........ ... .. . . . . e 1-41
Modify Project . . ... o 1-42
SDRTemplate . ............ ... . . . e 1-45
Required Products . ......... ... . . . 1-45
Template Structure . ........ ... .. . . . . . e 1-45
Modify Project . . ... o 1-46
Considerations for Multiple IPs in FPGAModel .................... 1-48
Create an SoC Project Application . .............................. 1-49
Project and Top-Level Model . .................................. 1-50
Software and Task Management on Processor . .................... 1-52
Processor Model . . ... ... 1-52

Task Processing . . .... ...t e e 1-53
TopModel .. ... 1-54
User Logic on FPGA . . . . ... ... . . . ... i i 1-55
Sample Based Model .. ...... ... ... .. . . ... 1-55
TopModel . ... e 1-57
Memory and Register Channel Connections .. ..................... 1-59
Memory Channel Connection . ............... . ..ottt .. 1-59
Register Channel Connection .................. .. ... ..., 1-59
Simulation and Analysis . ............. ... ... ... ... .. . . 1-61
Custom Hardware Board Configuration .......................... 1-62
Build Error for Rapid Accelerator Mode . ......................... 1-63
Simulate SoC Applications

Task Overruns and Countermeasures ............................. 2-2
Reduction of Task Execution Interval . ................ . coviuuuun. 2-2
Distribution of Tasks Across Multiple Processor Cores . .............. 2-3
Dropping Overrunning Tasks ............... ... . ... 2-3
Task Execution Playback Using Recorded Data ..................... 2-7



Task Priority and Preemption ... ........ ... ... ... ................ 2-8
Preemption of Low Priority Task by High Priority Task ............... 2-8
Multicore Execution and Core Visualization ....................... 2-11
Specifythe CoreforaTask .. ........ ... .. . 2-11
Core Visualization in Simulation Data Inspector . .................. 2-11
Multi-Core Task Execution . ........... ..t 2-12
Recording Tasks for Use in Simulation . .......................... 2-14
Task Visualization in Simulation Data Inspector . ... ............... 2-15
Simulation Performance Plots ... ............................... 2-17
Memory Channel Latency Plots ... ............. ... ... ... .. ..... 2-18
Memory Controller Latency Plots .. ............................ 2-20
Memory Bandwidth Plots . .......... . ... ... .. . .. . .. 2-23
Memory Burst Plots .. ........ .. 2-24
Simulation Diagnostics .. ............... . ... ... . ... . . . ... 2-26
Buffer and Burst Waveforms . .......... ... ... ... .. .. . ... . . . ... 2-26
External Memory Channel Protocols . ............................ 2-30
AXI4 Stream to Software viaDMA ... ... ... ... . .. 2-30
AXI4 Stream FIFO ... . o 2-30
AXI4 Stream Video FIFO . . ... oo 2-30
AX14 Stream Video Frame Buffer .. ......... ... ... ... ..., 2-30
AXT4 Random ACCESS . . v v v v vttt 2-31
Record Data from Hardware I/O Devices . ......................... 2-32
ProcesstoRecord Data ........... ... ... . . i 2-32
Use Memory and I/O Device Data in Processor Simulation ......... .. 2-33
Event-DrivenTask ... ... . i e 2-33
Timer-Driven Task . . ....... .. i i 2-33
Using the Algorithm Analyzer Report . ........................... 2-34
Open RepoTt . .. . e 2-34
Operator View . .. .. e 2-34
Algorithm View . ... . ... . . 2-35

Generate Code and Deploy on SoC Device

3|

Supported Third-Party Tools and Hardware ........................ 3-2
Third-Party Synthesis Tools and Version Support .................... 3-2
Third-Party Support for Software Generation ...................... 3-2
Supported Xilinx Devices . .. ... i 3-2
Supported Intel Devices ... ........ ... 3-2
SoC Board Support Packages . .............0 i 3-2

Code Generation of Software Tasks ............................... 3-4
Timer-Driven Tasks . .. ... . i e 3-4



vi

Contents

Event-Driven Task . . .. ..ot i i 314

SoC Generation Workflows ...................................... 3-5
Use SoC Builder tool to deploy SoC model on SoC device ............. 3-5

Use exportReferenceDesign function to deploy SoC model on SoC device
...................................................... 3-5
Export Custom Reference Design from SoCModel ... ............... 3-6
Create SoC Modelof System .. ....... ... . i, 3-6
Prepare SoC Model for Reference Design Export . .................. 3-6
Additional Preparation When SoC Model Includes Processor ........... 3-7
Execute socExportReferenceDesign Function .. .................... 3-7
Integrate IP Core into Generated Reference Design .. ............... 3-7
Generate SoC Design . .............. . .. .. i 3-11
Step 1: Set Up FPGA Design Software Tools . ..................... 3-11
Step 2: Start SoC Builder . ... ... ... . . . 3-11
Step 3: Prepare Model for Generation ........................... 3-12
Step 4: Select Project Folder ............ ... .. ... 3-13
Step 5: Select Build Action . .......... ... ... .. ... .. 3-13
Step 6: Validate Model ........... ... ... .. . . ... . 3-13
Step 7: Build Model . ...... ... .. . . . . 3-14
Step 8: Connect Hardware . ......... ... ... .. ... 3-14
Step9:Loadand Run ........ ... .. .. ... . 3-14

Analyze Performance on SoC Device

4

Code Instrumentation Profiler ... ......... ... ... ... ... ........ 4-2
Limitations . .. ... . e e 4-2
Kernel Instrumentation Profiler . ... ......... ... ... ... ......... 4-4
Limitations . . ... ... e 4-5
Profile Task Execution on Processor . ............................. 4-6
Task Profiling of Model Running on Hardware ..................... 4-6
Memory Performance Information from FPGA Execution ............. 4-8
Memory Performance Plots ... ....... .. ... . .. . .. 4-9
Burst Waveforms . ........... .. . 4-14
Configuring and Querying the AXI Interconnect Monitor ............. 4-14
Examples

Random Access of External Memory . ............................. 5-2
Packet-Based ADS-B Transceiver . ............................... 5-10



Histogram Equalization Using Video Frame Buffer ................. 5-21

Streaming Data from Hardware to Software ....................... 5-32
Analyze Memory Bandwidth Using Traffic Generators ............... 5-43
Record I/O Data from SoC Device . ............. ... ..., 5-51
Simulate with I/O Data Recorded from SoC Device ................. 5-56
Task Execution . ....... ... ... ... .. .. .. .. . . . ... 5-58
Timer-Driven Task . ... ... ... ... . . . . 5-78
Event-Driven Task . ... ... ... ... . . . . . . . ., 5-82
Hardware-Software Partitioning of a Motor Control Algorithm . .... .. 5-86
Export Custom Reference Design . ............................... 5-92
Estimate Number of Operators for MATLAB Algorithm .............. 5-96
Compare FIR Filter Implementations Using socModelAnalyzer . . . ... 5-100






Create SoC Models

* “What is Task Execution?” on page 1-2

» “Event-Driven Tasks” on page 1-4

* “Timer-Driven Task” on page 1-8

* “Kernel Latency” on page 1-12

* “Task Duration” on page 1-16

* “Value and Caching of Task Subsystem Signals” on page 1-19
* “Memory and Register Data Transfers” on page 1-20

* “AXI4-Stream Interface” on page 1-23

» “Simplified AXI4 Master Interface” on page 1-25

* “AXI4-Stream Video Interface” on page 1-28

» “Use Template to Create SoC Model” on page 1-31

+ “HDMI Template” on page 1-35

* “Frame Buffer with HDMI Template” on page 1-38

* “Stream from FPGA to Processor Template” on page 1-41

* “SDR Template” on page 1-45

* “Considerations for Multiple IPs in FPGA Model” on page 1-48
* “Create an SoC Project Application” on page 1-49

* “Project and Top-Level Model” on page 1-50

* “Software and Task Management on Processor” on page 1-52
* “User Logic on FPGA” on page 1-55

* “Memory and Register Channel Connections” on page 1-59

* “Simulation and Analysis” on page 1-61

* “Custom Hardware Board Configuration” on page 1-62

* “Build Error for Rapid Accelerator Mode” on page 1-63



1 Create SoC Models

What is Task Execution?

1-2

Created :—:r Waiting

A task is a unit of execution or unit of work in a software application. Typically, task execution in an
embedded processor is managed by the operating system (OS). When deployed to the embedded
processor, a task corresponds to an OS thread. The SoC Blockset defines the execution life cycle and
relation to OS threads as follows.

Task Execution Life Cycle

The life cycle of a task can be divided into five states:

* Created - The system creates all the tasks when the application starts and immediately moves
them to the waiting state.

* Wiaiting - The task waits for the associated trigger signal, such as an OS timer or I/O device. After
receiving the trigger signal, the task starts to run. If the task has the highest priority, it enters the
running state. Otherwise, the task continues to wait until it becomes the highest priority, triggered
task.

* Running - The task executes its code. When the code completes execution, the task immediately
moves to the waiting state. If a trigger for a higher-priority task occurs, the running task moves to
the preempted state.

* Preempted - The task is preempted and waiting to run. A task runs based on a combination of the
task priority and the order the task entered the Preempted state. Assuming equal task priorities of
all other tasks in Ready to Resume state, tasks run based on first-in-first-out (FIFO) ordering.

* Terminated - Tasks terminate when the application ends.

This figure shows the state diagram of a task execution life cycle for an application using an OS. For
simplicity, the terminated state is not shown, but a task can reach the terminated state from any of
the other states.

Preempted

' Start Run

Freempted

Completed

Task and Thread

A task is a conceptual unit of work in an algorithm. In an application executing on a device, a task is a
section of code that executes in a thread within an operating system (OS). The OS thread determines
the state of execution of the task. Within the SoC Blockset, a task specifically refers to the portion of
the Simulink® model contained within a rate or function-call subsystem. The trigger signal for that
subsystem comes from a Task Manager block. When deployed to hardware, an OS thread uses the
task properties. The thread executes the code generated from the subsystem. Conceptually, a Task in
simulation is equivalent to a thread in generated code.

See Also
Task Manager



What is Task Execution?

More About
. “Timer-Driven Task” on page 1-8
. “Event-Driven Tasks” on page 1-4

External Websites
. Task (computing)

1-3



1 Create SoC Models

Event-Driven Tasks

1-4

Event-driven tasks start executing when triggered by an external event. Events can include internal

events, such as memory stream or register writes, or external events, such as receiving a UDP data

packet from a network connection. Assuming no other tasks are executing at the time of the event or
the task has the highest priority, the event-driven task can respond immediately to the event. The task

can then process the received data, and potentially generate other events in the model.

Create a Simulink Model with an Event Driven Task

This example shows how to create and configure a Simulink® model to use the event driven task
feature of the SoC Blockset.

Create a Software Reference Model

This section shows how to create a reference model of the software for an SoC application model. The

software contains an event driven task subsystem that reacts to receiving UDP packets.

Create a new blank model.

2 In the Simulink editor, add a Function-Call Subsystem block to the model. Connect an Inport
block to the input port of the Function-Call Subsystem block. Connect the output port to a
Terminator block.

3 Add an Asynchronous Task Specification block to the model. On the Block Parameters dialog box,

set the Task priority to 41.

4 Connect the output port of Asynchronous Task Specification block to the function() input of the
Function-Call Subsystem block.

5 Add an Inport block and open the Block parameters dialog box. On the Signal Attributes tab,
check Output function call. Connect the Inport block to the input port of the Asynchronous
Task Specification block.

Open the Function-Call subsystem model.

Add a UDP Read block to model. Open the Block Parameters dialog box, set Maximum data
length (elements) to 1024 and check Enable event-based execution.

8 Connect the Inport block to the UDP Read block UDP Data port. Connect the Data port to the
Outport block. Connect the Length port to a Terminator block.

9 Open the Configuration Parameters dialog box, select the Solver pane. Set Solver selection >
Type to Fixed-step and check Tasking and sample timer options > Higher priority value

indicates higher task priority.
10 Select the Hardware Implementation pane, set Hardware board to Zedboard.
11 Save the model as soc_task createeventdriventask software.slx.

The completed model should look similar to the following model.



Event-Driven Tasks

1) b Pa
Function Call
func:h'rc:nil
- s =
LIDP Data
bMessage Ewvent Driven Task
Subsystemn

Create the SoC Application Model

This section shows how to create the top level SoC application model that contains the software

reference model developed in the previous section.

Create a new blank model.
In the Simulink editor, add a Model block. On the Block Parameters dialog box, set Model name
to soc_task createeventdriventask software.slx.

3 Add a Task Manager block and open the Block Parameters dialog box. Set the Main > Type to
Event-driven and Main > Priority to 41. Each newly added event-driven task exposes an
event message input port on the Task Manager block.

4 (Optional) On the Simulation tab, you specify the task duration for that task. For more
information on setting task duration, see “Task Duration” on page 1-16.

5 In the editor, add an IO Data Source block to the model. Open the Block Parameters dialog box
and enable Show event port.

6 Connect the IO Data Source block Event port to the Task Manager and the UDP Data port to the
UDP Data Message port on the Model reference block.

7  Open the Configuration Parameters dialog box, select the Solver pane. Set Solver selection >
Type to Fixed-step and check Tasking and sample timer options > Higher priority value
indicates higher task priority.

8 Select the Hardware Implementation pane, set Hardware board to Zedboard.

9 Update the diagram, press Ctrl+D.

10 Save the model as soc_task createeventdriventask application.slx.

The completed model should look similar to the following model.

=
= Task1Event g: L.\. Taskt _._._._._..i
uoe 1‘-"] : soc_task_createsventdriventask_software
From dialog avant Bttt P Function Call

1001
1010 =
mEeg UDF Data Message

uintd(1:1024)

Run the Model with Event Driven Task

In the Simulink editor, run the soc_task createeventdriventask application.slx model.
When the run completes, open the Simulation Data Inspector and select Task1. The Simulation Data

1-5



1 Create SoC Models

Inspector shows that Task1 triggers and executes each time a new UDP packet arrives. Although
superficially the task execution appears periodic, this is only a byproduct of the current default
settings of the IO Data Source block that generates the event with a time step of 0. 1.

Task1
Running 4
Freempted 4
Waiting
01 02 02 0.4 05 08 07 Y 0.8
1.5 4
1.0 4
0.5
:] 4
0.5
1.0 4
1.5 4
01 02 03 0.4 05 08 07 08 0.8 10

[/O Data Source | Task Manager

1-6



Event-Driven Tasks

More About

. “What is Task Execution?” on page 1-2
. “Timer-Driven Task” on page 1-8

1-7



1 Create SoC Models

Timer-Driven Task

1-8

Timer-driven tasks execute at a periodic rate equal to an integer multiple of the Simulink model
fundamental sample time.

To create a timer-driven task, connect the task port of a Task Manager block to a periodic event port
on a Model block. Each rate in a Model block generates a unique model periodic event port with the
time step for the rate shown on the block icon. In the Model block dialog mask, use the Schedule
rates parameter to enable model periodic event ports.

Note A timer-driven task requires a lower priority than an event-driven task.

Create a Simulink Model with an Timer Driven Task

This example shows how to create and configure a Simulink model to use the timer driven task
feature of the SoC Blockset.

Create a Software Reference Model

This section shows how to create a reference model of the software for an SoC application model. The
software contains one timer driven task subsystem that reacts to receiving UDP packets.

Create a new blank model.

N

In the Simulink editor, add a Subsystem block to the model. Add a Sine block and connect it to
the Subsystem block. Connect the output of the Subsystem block to a Terminator block.

Open the Function-Call subsystem model.
Open the Block parameters dialog box of the Inport block, set the Sample Time to 0. 1.
In the Simulink editor, open the Configuration Parameters dialog box.

A AW

Select the Hardware Implementation pane, set Hardware board to Xilinx Zynq
UltraScale+ MPSoC ZCU102 Evaluation Kit.

7 Save the model as soc_task createtimerdriventask software.slx.

The completed model should look similar to the following model.

Y

[
||

ﬁU

Create the SoC Application Model

This section shows how to create the top level SoC application model that contains the software
reference model developed in the previous section.
1 Create a new blank model.

In the Simulink editor, add a Model block and open the Block Parameters dialog box.

3 Check Main > Schedule Rates and set Main > Model name to
soc_task createtimerdriventask software.slx.



Timer-Driven Task

4 In the editor, add a Task Manager block to the model.

(Optional) Open the Block Parameters dialog box of the Task Manager block. By default, the task
Type is Timer-driven with a Period of 0. 1. On the Simulation tab, you specify the task
duration for that task. For more information on setting task duration, see Task Duration.

In the editor, connect the Task1 port to the D1[0.1] port of the Model block.

7  Open the Configuration Parameters dialog box, select the Hardware Implementation pane, set
Hardware board to Xilinx Zyng UltraScale+ MPSoC ZCU102 Evaluation Kit.

Update the diagram, press Ctrl+D.
Save the model as soc_task createtimerdriventask application.slx.

The completed model should look similar to the following model.

= soc_task_createtimerdriventask_software
:-fr  Taskd o mmem o mim i mm e # D[0.1]
L | " o ]

Run the Model with Timer Driven Task

In the Simulink editor, run the soc_task createtimerdriventask application.slx model.
When the run completes, open the Simulation Data Inspector and select Task1. The Simulation Data
Inspector shows that Task1 triggers each 0.1 time steps.

1-9



1 Create SoC Models

1-10

W Tazk1
Running
Sreempted
Waiting
i z 3 3 10
2d
14
a4
-1
-2
i Z 3 3 10
See Also
Task Manager
More About
. “What is Task Execution?” on page 1-2



Timer-Driven Task

“Event-Driven Tasks” on page 1-4

1-11



1 Create SoC Models

Kernel Latency

High
Priority
Task

Low
Priority
Task

1-12

In a deployed application, switching between threads requires a finite amount of time depending on
the current state of the thread, embedded processor, and OS. Kernel latency defines the time
required for the operating system to respond to a trigger signal, stop execution of any running
threads, and start the execution of the thread responsible for the trigger signal.

SoC Blockset models simulate Kernel latency as a delay at the start of execution of a task the first
time the task moves from the waiting to running state. The following diagram shows the execution
timing of a high-priority and low-priority task on a system that simulates a single processor core.

_}_______________ I

_}_______________ R

Trigger Trigger Trigger Trigger
I:I Task Preempted I:I Task Running - Kernel Latency
A . Switch to Lower Switch to Higher
Trigger 1M0ger Event : Priority Task I Priority Task

Other factors affecting kernel latency, such as context switch times, can be considered negligible
compared to other effects and are not modeled in simulation.

Note Kernel latency requires advanced knowledge of the processor specifications and can be
generally set to 0 without impact to the simulation.

Effect Kernel Latency on Task Execution

This example shows the effect of kernel latency on the behavior and timing of two timer driven tasks
in an SoC application.

The following model simulates a software application with two timer driven tasks. The task
characteristics, specified in the Task Manager block, are as follows:

Mame Period Mean Duration
HighPriorityTask 0.01 0.004
LowPriorityTask 0.03 0.007




Kernel Latency

With these timing conditions, the high priority task preempts the low priority task. In the model
Configuration Parameters dialog box, the Hardware Implementation > Operating system/
scheduler > Kernel latency is set to 0.002.

soc_task_kernellatency _software

r —ohPriorityTask F == oo mimemem e mem o M DA0.01]
= [T D D2[0.03] ]
! . |
0= ! 1
a‘_l__'b_wlF'ri-:urirg.lTask A l_

Hiph Frisyusecy Task

Run the model and open the Simulation Data Inspector. Selecting the two task signal produces the
following display.

1-13



1 Create SoC Models

W HighPriarityTask W LowPriority Task
Running
Freempted
Waiting 4—-

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 2.1d

24

1 4

a

1

24
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 2.10

Inspecting the Simulation Data Inspector, a change in task state from Waiting to Running shows a
latency of 0.002 seconds. However, when the task changes from Preempted to Running, no latency

1-14



Kernel Latency

occurs. This timing matches with the expected behavior of task, experiencing a latency in startup of
that task execution instance, but not when the task instance already exists.

See Also
Task Manager

More About

. “What is Task Execution?” on page 1-2
. “Task Duration” on page 1-16

1-15



1 Create SoC Models

Task Duration

Probakbility

The total time an instance of a task spends in the running state defines the task duration. Task
duration can vary due to multiple sources, in particular:

* Conditional branching in the task algorithm

* Dependence on signal values from other tasks

* Dependence on signals from external sources, such as I/O devices or hardware user logic

* Compiler settings and SoC device processor architecture

As a result, task duration for any given task instance can be nondeterministic.
The Task Manager block provides four ways to simulate the nondeterministic task duration:

approximation using a parameterized probability distribution, approximation using a calculated
probability distribution, and replay of recorded task execution timing data.

Approximation Using Parameterized Probability Distribution
In simulation, the Task Manager block can define the task duration as random variable expressed as
the weighted sum of truncated normal distributions. For example, this diagram shows the probability

distribution of a task that executes with a short task duration, but can occasionally execute with a
longer durations.

Shart Task Duration

Long Task Duration

1-16

Y

Execution Time

To create a probability distribution for a task duration, first open the Task Manager block dialog.
Then, on the Simulation tab, set Specify task duration via: to Dialog. In the Task duration
settings section, you can set the properties of each distribution by editing the text of that property.
You can also add and delete probability distributions from the sum of distributions by clicking the
Add and Delete buttons, respectively.



Task Duration

Specify task duration via: | Dialog -

Task duration settings

Specify task duration times as a normal distribution, or a
combination of multiple normal distributions.

Percent Mean sD Min Man
1 80 1e-06 1] 1e-06 le-06
2 10 1e-06 1] 1e-06 le-06
3 10 : 1e-06 0 1e-06 1e-06

Add Delete

Note

The sum of the Percent weights must equal 100.
Each task can use a maximum of 5 distributions.

Approximation Using Calculated Probability Distribution

Each recording of task execution data, either from a previous simulation or from execution on an SoC
device, generates several profiling files. The metadata. csv file contains the calculated mean and
standard deviation for each task in that recording. To configure a task in the Task Manager block to
use the derived statistical data for task duration, follow these steps:

1
2

Open the Task Manager block dialog mask.

On the Simulation tab, set Specify task duration via to Recorded task diagnostics
file.

Specify the location and name of the metadata. csv file. The Mean and Deviation parameters
are automatically updated with the data from the file.

Click OK.

Specification from Task Manager Input Port

An input port on the Task Manager block dynamically specifies the task duration. To expose this task
duration input port, follow these steps:

1
2

Open the Task Manager block dialog mask.
On the Simulation tab, set Specify task duration via to Input port.

1-17



1 Create SoC Models

1-18

3 Click OK to expose a new input port, named TaskNameDur, on the block.

Replay of Recorded Task Execution Timing Data

A data file provides exact task duration for each task execution instance. A task execution data file
can come from a previous or independent model simulation or directly from the task execution on a
processor in an SoC device. For more information on replaying recorded task execution timing data,
see “Task Execution Playback Using Recorded Data” on page 2-7.

See Also
Task Manager

More About

. “What is Task Execution?” on page 1-2
. “Task Execution Playback Using Recorded Data” on page 2-7

External Websites
. Truncated Normal Distribution


https://wikipedia.org/wiki/Truncated_normal_distribution

Value and Caching of Task Subsystem Signals

Value and Caching of Task Subsystem Signals

In SoC Blockset, a task subsystem can be treated as an independent model with the task duration
simulating the expected execution time on an SoC device. When the Task Manager block executes a
task, input signals connected to that task subsystem can either be sampled and cached at the start of
the task execution or sampled at the end of the task execution instance. The task subsystem then
executes using either the cached or latest value. The value of signals and buses output from the
subsystem change at the end of the task execution instance.

To enable task subsystem input signal caching, first open the Simulink configuration parameters on
the processor reference model. On the Hardware Implementation pane, select Hardware board
settings > Task and memory simulation > Cache input data at task start.

See Also
Task Manager

More About

. “What is Task Execution?” on page 1-2
. “Task Duration” on page 1-16
. “Kernel Latency” on page 1-12

1-19



1 Create SoC Models

Memory and Register Data Transfers

An SoC application is composed of one or more algorithms. When an algorithm transfers data to
another algorithm, the data is represented as a signal line in Simulink. For behavioral models, the
data transfer is instantaneous.

This diagram shows a behavioral model of a datapath between two algorithms.

Alg1 — » Alg2

In the physical world, the algorithms can be on two separate devices, and data transfers do not
happen instantaneously. Furthermore, the algorithms can run at different rates, and therefore require
buffering and control logic for handshaking. For example, a simple handshake such as “data is valid”
from the producer of the data and “ready to accept data” from the consumer serve as control logic.

If one processing element executes in an FPGA or ASIC, and the next processing element executes on
an embedded processor, then a simple signal line represents more than just a complex hardware
datapath. The data transfer also represents a processor interrupt handler, an operating system task
scheduler, and a software driver stack.

In SoC Blockset, you model data transfers and handshake protocols through shared memory. Use a
Memory Channel block for external memory or a Register Channel block for registers.

Modeling Datapath with Memory Channel Block

The Memory Channel block represents an abstraction to a complex datapath through external
memory and supports different handshake protocols. It facilitates a refinement of the communication
between processing elements from an instantaneous, protocol-less wire to a full direct memory
access (DMA) connection between a processor and an FPGA.

By adding a Memory Channel block, you can model data movement from one part of the algorithm to
another.

Alg1 | dafa data | Alg2

The block provides a model of the communication pipeline. The channel also provides a signaling
interface.

1-20



Memory and Register Data Transfers

Alg1

>

data data

Alg2

-
control control

The interface protocol depends on where the processing is executed. An FPGA or ASIC algorithm can
perform data transfers by using standard protocols such as AXI4-Stream or AXI4. An embedded CPU
algorithm can use a driver-interface exported to the user space.

This figure shows a model of the datapath from an FPGA algorithm streaming data to a processor
algorithm.

I'__'____'____‘I
| DMA driver | data 1, Task Manager
Memory Controller i ' .
!  DDR T
Y o
: x
Controller z
‘J Jf % r
—¥ o done
| ' AX] Interconnect | =
Processor
A | [ #
bdone bdone
¥ v ¥
o
breqg l breqg
FRGA | |Protocall | 2% || FIFO J { """""" Buflers [ L FIFO | |Protocol
Algorithm write—» ontroler - [T [ ==~
® | |®

Memory Channel

Other Memory Channel type selections model additional common datapaths through external
memory. For more information about Memory Channel configurations, see Memory Channel.

The writer and reader are connected to the memory and request access to the external memory from
a memory controller. For more information about the Memory Controller block, see Memory
Controller.

Modeling Datapath with Register Channel Block

The Register Channel block represents the serialization of the processor reads or writes through a
common configuration bus such as AXI-Lite.

The Register Channel block provides a timing model for the transfer of register values between
processor and hardware algorithms through a common configuration bus. Use this block when the
processor writes a command or configuration register or when the processor reads a status register.

1-21



1 Create SoC Models

See Also
Memory Channel | Register Channel

More About

. “External Memory Channel Protocols” on page 2-30

1-22



AXI4-Stream Interface

AXlI4-Stream Interface

Using SoC Blockset, you can model a simplified, streaming protocol in your model. Use HDL Coder™
to generate AXI4-Stream interfaces in the IP core.

Simplified Streaming Protocol

When you want to generate an AXI4-Stream interface in your IP core, in your DUT interface,
implement the following signals:

* Data
e Valid

When you map scalar DUT ports to an AXI4-Stream interface, you can optionally model the following
signals and map them to the AXI4-Stream interface:

* Ready

* Other protocol signals, such as:

* TSTRB
* TKEEP
* TLAST
« TID

* TDEST
* TUSER

Data and Valid Signals

When the Data signal is valid, the Valid signal is asserted.

—» [Dataln DataOut ———
— Validin  ValidOut—p» Data | KA X B XX Ko XE)

Ready Signal (Optional)

The AXI4-Stream interfaces in your DUT can optionally include a Ready signal. In a Slave interface,
the Ready signal enables you to apply back pressure. In a Master interface, the Ready signal enables
you to respond to back pressure.

If you model the Ready signal in your AXI4-Stream interfaces, your Master interface ignores the Data
and Valid signals one clock cycle after the Ready signal is deasserted. You can start sending Data and
Valid signals once the Ready signal is asserted. You can send one more Data and Valid signal after the
Ready signal is deasserted.

1-23



1 Create SoC Models

If you do not model the Ready signal, HDL Coder generates the signal and the associated back
pressure logic.

— [Dataln DataOut ———-
— - Validin  ValidOut—— Data { KA X BN\ XcXoXE)

e GECEEEY Readyln ReadyCQut-eg------- Valid / \ /
Ready \ /

For example, if you have a FIFO in your DUT to store a frame of data, to apply back pressure to the
upstream component, you can model the Ready signal based on the FIFO Full signal.

(T )y———»fm Out »{Data_in Result

Data_In Result

Push Ermpty P FIFO_Empty FIFO Read f—
Valid_In
Algorithm
Pap Full 4>Dc
) Ready
Logical
HDL FIFO Operator
See Also
Memory Channel | SoC Bus Creator
More About
. “External Memory Channel Protocols” on page 2-30

. “Simplified AXI4 Master Interface” on page 1-25
. “AXI4-Stream Video Interface” on page 1-28

1-24



Simplified AX14 Master Interface

Simplified AXI4 Master Interface

In this section...
“Simplified AXI4 Master Protocol - Write Channel” on page 1-25
“Simplified AXI4 Master Protocol - Read Channel” on page 1-26

For designs that require accessing large data sets from an external memory, model your algorithm
with a simplified AXI4 Master protocol. When you run the IP Core Generation workflow, HDL
Codergenerates an IP core with AXI4 Master interfaces. The AXI4 Master interface can communicate
between your design and the external memory controller IP by using the AX14 Master protocol.

Simplified AXI4 Master Protocol - Write Channel

You can use the simplified AXI4 Master protocol to map to AXI4 Master interfaces. Use the simplified
AXI4 Master write protocol for a write transaction and the simplified AXI4 Master read protocol for a
read transaction.

This figure shows the timing diagram for the signals that you model at the DUT input and output
interfaces for an AX14 Master write transaction.

Clock

wr_ready Data Data
wr_bvalid wr addr i

) Wrcadcr wr_len Al

Wirite Slave wr_bresp wr_len we walid _,l'—_'l f_'l
to Master bus (Optional) i Write Master i m
wr_complete wrivehd to Slave bus Wr_ready ‘
{Optional) WY ~ OYTY {-3 J ete \
\

LR K R e LR R ECCR R R R, O JECAYTEN

Data Burst 1 Data Burst 2

The DUT waits for wr_ready to become high to initiate a write request. When wr_ready becomes
high, the DUT can send out the write request. The write request consists of the Data and Write
Master to Slave bus signals. This bus consists of wr_len, wr _addr, and wr_valid.wr_addr
specifies the starting address that DUT wants to write to. The wr_1len signal corresponds to the
number of data elements in this write transaction. Data can be sent as long as wr_valid is high.
When wr_ready becomes low, the DUT must stop sending data within one clock cycle, and the Data
signal becomes invalid. If the DUT continues to send data after one clock cycle, the data is ignored.

Output Signals

Model the Data and Write Master to Slave bus signals at the DUT output interface.

* Data: The data that you want to transfer, valid each cycle of the transaction.
* Write Master to Slave bus that consists of:
* wr_addr: Starting address of the write transaction that is sampled at the first cycle of the
transaction. The address is specified in bytes.

* wr_Llen: The number of data values that you want to transfer, sampled at the first cycle of the
transaction. The wr_len signal is specified in words.

1-25



1 Create

SoC Models

Clock

rd addr
Data rd len
rd_aready g addr rd_avalid
rd_dvalid rd_len rd aready

Read Slave rc_::?"fé " rd_avalid Read Master Data
to Master Bus (Uptiana toSlaveBus rd dvalid

rd_rresp rd_dready — - )
(Optional) {Optional) L dl

1-26

* wr_valid: When this control signal becomes high, it indicates that the Data signal sampled at
the output is valid.

Input Signals

Model the Write Slave to Master bus that consists of:

* wr_ready: This signal corresponds to the backpressure from the slave IP core or external
memory. When this control signal goes high, it indicates that data can be sent. When wr_ready is
low, the DUT must stop sending data within one clock cycle. You can also use the wr_ready signal
to determine whether the DUT can send a second burst signal immediately after the first burst
signal has been sent. Multiple burst signals are supported, which means that the wr_ready signal
remains high to accept the second burst immediately after the last element of the first burst has
been accepted.

* wr_bvalid (optional signal): Response signal from the slave IP core that you can use for
diagnosis purposes. The wr_bvalid signal becomes high after the AXI4 interconnect accepts
each burst transaction. If wr_len is greater than 256, the AX14 Master write module splits the
large burst signal into 256-sized bursts. wr_bvalid becomes high for each 256-sized burst.

* wr_bresp (optional signal): Response signal from the slave IP core that you can use for diagnosis
purposes. Use this signal with the wr_bvalid signal.

* wr_complete (optional signal): Control signal that when remains high for one clock cycle
indicates that the write transaction has completed. This signal asserts at the last wr_bvalid of
the burst.

Simplified AXI4 Master Protocol - Read Channel

This figure shows the timing diagram for the signals that you model at the DUT input and output
interfaces for an AX14 Master read transaction. These signals include the Data, Read Master to
Slave Bus, and Read Slave to Master Bus.

:‘.'..".‘_l'l'[:':|:".::|::|::'.‘:'| 0 -.'::|'::1‘..‘.'::||]|]|1:'.:.':: 0 ::|_||_::|:'

The DUT waits for rd_aready to become high to initiate a read request. When rd_aready is high,
the DUT can send out the read request. The read request consists of the rd_addr, rd_1len, and

rd avalid signals of the Read Master to Slave bus. The slave IP or the external memory
responds to the read request by sending the Data at each clock cycle. The rd_len signal
corresponds to the number of data values to read. The DUT can receive Data as long as rd_dvalid
is high.

Read Request



Simplified AX14 Master Interface

To model a read request, at the DUT output interface, model the Read Master to Slave bus that
consists of:

* rd_addr: Starting address for the read transaction that is sampled at the first cycle of the
transaction. The address is specified in bytes.

* rd_len: The number of data values that you want to read, sampled at the first cycle of the
transaction. The rd_len signal is specified in words.

* rd_avalid: Control signal that specifies whether the read request is valid.
At the DUT input interface, implement the rd aready signal. This signal is part of the Read Slave
to Master bus and indicates when to accept read requests. You can monitor the rd_aready signal

to determine whether the DUT can send consecutive burst requests. When rd_aready becomes high,
it indicates that the DUT can send a read request in the next clock cycle.

Read Response

At the DUT input interface, model the Data and Read Slave to Master bus signals.

* Data: The data that is returned from the read request.
* Read Slave to Master bus that consists of:
* rd dvalid: Control signal which indicates that the Data returned from the read request is
valid.

* rd rvalid (optional signal): response signal from the slave IP core that you can use for
diagnosis purposes.

* rd_rresp (optional signal): Response signal from the slave IP core that indicates the status of
the read transaction.

At the DUT output interface, you can optionally implement the rd_dready signal. This signal is part
of the Read Master to Slave bus and indicates when the DUT can start accepting data. By
default, if you do not map this signal to the AXI4 Master read interface, the generated HDL IP core
ties rd_dready to logic high.

See Also
Memory Channel | SoC Bus Creator

More About

. “External Memory Channel Protocols” on page 2-30
. “AX14-Stream Interface” on page 1-23
. “AX14-Stream Video Interface” on page 1-28

1-27



1 Create SoC Models

AXlI4-Stream Video Interface

1-28

In this section...

“Streaming Pixel Protocol” on page 1-28

“Protocol Signals and Timing Diagrams” on page 1-28

Using SoC Blockset, you can implement a simplified, streaming pixel protocol in your model. Use
HDL Coder to generate an HDL IP core with AXI4-Stream Video interfaces.

Streaming Pixel Protocol

You can use the streaming pixel protocol for AXI4-Stream Video interface mapping. Video algorithms
process data serially and generate video data as a serial stream of pixel data and control signals.

To generate an IP core with AXI4-Stream Video interfaces, in your DUT interface, implement these
signals:

* DPixel Data
* Pixel Control Bus

The Pixel Control Bus is a bus that has these signals:

* hStart
* hEnd

* vStart
* vEnd

* valid

The signals hStart and hEnd represent the start of an active line and the end of an active line
respectively. The signals vStart and vEnd represent the start of a frame and the end of a frame.

You can optionally model the backpressure signal, Ready, and map it to the AXI4-Stream Video
interface.

Protocol Signals and Timing Diagrams

This figure is a 2-by-3 pixel image. The active image area is the rectangle with a dashed line around
it and the inactive pixels that surround it. The pixels are labeled with their grayscale values.




AXI4-Stream Video Interface

Pixel Data and Pixel Control Bus

This figure shows the timing diagram for the Pixel Data and Pixel Control Bus signals that you
model at the DUT interface.

AW AWAWAWAWAWAWAWAWAWAWAW
Pixel Data (o X 30X 60X 90X 0 X10X150X1800 )
(hstat — /\ /\
—»-lPixelln  Pixelout—  Pixel hEnd /N /o

— Crin crlout —»  Control

Bus | VStart /\

vEnd /\
vais .

The Pixel Data signal is the primary video signal that is transferred across the AXI4-Stream Video
interface. When the Pixel Data signal is valid, the valid signal is asserted.

The hStart signal becomes high at the start of the active lines. The hEnd signal becomes high at the
end of the active lines.

The vStart signal becomes high at the start of the active frame in the second line. The vEnd signal
becomes high at the end of the active frame in the third line.

Optional Ready Signal
This figure shows the timing diagram for the Pixel Data, the Pixel Control Bus, and the Ready
signal that you model at the DUT interface.

1-29



1 Create SoC Models

ck /\ /v /L
Pixel Data (&YX E)Y 0 Y25 DO DE

(hstat — /7\ S\
— Pixelln  PixelQut—— Pixel hEnd /_\ / \

. " Control
— Ctll CtrlOut —— = vstart ﬂ

vEnd /\
\vald _ /—\_ /\ T\
Ready —\—/

~%------:Readyln ReadyOut-ws------- Bus

When you map the DUT ports to an AXI4-Stream Video interface, you can optionally model the
backpressure signal, Ready, and map it to the AXI4-Stream Video interface.

In a Slave interface, with the Ready signal, you can apply back pressure. In a Master interface, with
the Ready signal, you can respond to back pressure.

If you model the Ready signal in your AXI4-Stream Video interfaces, your Master interface must
deassert its valid signal one cycle after the Ready signal is deasserted.

If you do not model the Ready signal, HDL Coder generates the associated backpressure logic.

See Also
Memory Channel | SoC Bus Creator

More About

. “External Memory Channel Protocols” on page 2-30
. “Simplified AX14 Master Interface” on page 1-25
. “AX14-Stream Interface” on page 1-23

1-30



Use Template to Create SoC Model

Use Template to Create SoC Model

SoC Blockset model templates provide design patterns and best practices for models intended for
simulation, HDL code generation, or SoC deployment. Models created from any one of SoC Blockset
model templates have their configuration parameters set up for simulation and code generation.

Create SoC Model Using SoC Blockset Template
To efficiently model hardware for SoC design, create a project by using an SoC Blockset template.

1 Inthe MATLAB® Home tab, select the Simulink button. Alternatively, at the command line,
enter:
simulink

2 On the Simulink Start Page, scroll down to the SoC Blockset section, which contains links to
SoC templates for common workflows. Select a template and save the project. A project folder
opens in your workspace containing:
* A model with the name soc_* top.slx - The top-level model for the SoC project.

* referencedmodels - A folder containing the models referenced from the top model. Some
templates include an FPGA model and a processor model. Other templates only include one
referenced model: an FPGA model or a processor model.

* utilities - A folder containing utility functions or testbench data used by the model.

To open the top-level model in Simulink, on the Project Shortcuts tab, click Open Top model.

PROJECT PROJECT SHORTCUTS I

A JEIJ |*&) Open FPFA frame model
|*& Open FPGA pixel model

Mew Organize
Shortcut  Groups '*& Open Top model }

MANAGE GENERAL
@ H gl | 4 b Projects » FrameBufferHDMI »
Project - FrarneBufferHDMI
Views All| Project (T)

O -

i Dependency Analysis | referencedmodels
[*&| soc_hdmi_framebuffer_fpga_frame.sk
[*a| soc_hdmi_framebuffer_fpga_pixel.sh
=] utilities
f;‘_bl soc_hdmi_framebuffer_init.m
J_'bl soc_hdmi_framebuffer_shutdown.m
[*&| soc_hdmi_framebuffer_top.sh

3 In each template, navigate to the blocks marked FPGA Algorithm in the FPGA model, or

Processor Algorithm in the processor model. These blocks are highlighted for easy detection.
Replace the template blocks with your own algorithm model.

1-31



1 Create SoC Models

1-32

Tip To easily find the algorithm blocks, follow the annotations throughout the model hierarchy.

4 To open the SoC Blockset Block Library, select the Library Browser button, then select SoC
Blockset in the left pane. Alternatively, at the command line, enter:

soclib

This library includes blocks for creating SoC models and testbenches.

Template Structure

The top model in an SoC Blockset template includes an FPGA subsystem, which represents the logic
intended to program the FPGA. The FPGA subsystem includes two Simulink model variants:

* Frame-based FPGA model - For enhanced simulation performance

* Sample-based FPGA model - For cycle accuracy and code generation

The top model also includes a processor subsystem, which represents the software program intended
to run on the SoC processor. Both the FPGA and the top subsystems contain blocks marked as FPGA
Algorithm or Processor Algorithm. Replace these algorithms with your own logic. The top model of
the template also includes a memory system, with a memory controller and memory channels. These

blocks represent the physical memory system on the board. The model often includes a register
channel (to enable communication between the processor and FPGA), testbench, or I/O blocks.

Modify Project
Modify the FPGA Model

From the top model, open the FPGA model by clicking the arrow at the bottom left of the FPGA block:

[, Bl
Frame based processing

configReg dataOut f—

o rdCtrlin rdChriCut

; FPGA

wri

The FPGA model contains two model variants: a frame-based variant and a sample-based variant.
Double-click the model variant you want to modify. The FPGA model typically includes two main
subsystems for you to modify:

» FPGA Algorithm Wrapper - Double-click to open the model. The algorithm wrapper contains a
green-highlighted subsystem named FPGA Algorithm. This block has two inputs and one output



Use Template to Create SoC Model

and is implemented as a multiplier. Replace this block with your own FPGA algorithm. Add inputs
and outputs as required.

» Test Source Wrapper - This block includes a test source and is intended to generate stimulus as an
input to the FPGA algorithm. Modify the test source to your needs, or replace it with an
alternative source block. If the input to your FPGA algorithm is routed from an I/O block, such as
HDMI or SDR, consider using a specific application template.

Note Not all templates include a Test Source block in the FPGA model.

Modify the Processor Model

The processor model includes a Task Manager block and a processor wrapper. The template
implements the processor algorithm as a "pass through" wire. Open the processor algorithm wrapper,
and replace the Processor Algorithm block (highlighted in blue) with your desired algorithm.

Modify the Register Channel

The top model of a template also includes a register channel to communicate between the processor
and the FPGA model. Use the register channel to configure the FPGA mode,l or to read and check
status registers. The Register Channel block in the template includes one register. To add additional
registers you must modify the register channel block parameters, the FPGA algorithm, and the
processor algorithm:

1 Add registers to the register channel - Double-click the Register Channel block to open the block
mask and add additional registers as needed. Adding registers creates additional ports on the
Register Channel block. For additional information, see Register Channel.

2 Add ports to the processor model - Navigate to the Processor Algorithm Wrapper model. To
navigate to the processor model, click Open Processor model on the Project Shortcuts tab.
Double-click Processor Algorithm Wrapper to modify it.

For write registers, add an output port to the module and add logic to drive a value to the added
output port. For read registers, add an input port and logic to process the information returned
from a read register. From the top model, wire the port to the Register Channel block.

3 Add ports to the FPGA model - Navigate to the FPGA Algorithm Wrapper model. To navigate to
the FPGA/Frame based processing model, click Open FPGA sample model on the Project
Shortcuts tab. Double-click FPGA Algorithm Wrapper to modify it.

For write registers, add an input port to the module and logic to process the information
returned from a read register. For read registers, add an output port and logic to drive a value to
the added output port.

For equivalent behavior when using a Simulink sample-based variant, repeat this step for the
sample-based processing model in the FPGA wrapper.

4 From the top model, wire the new port to the Register Channel block.

See Also
Memory Controller | Memory Channel | Register Channel | Task Manager

More About

. “Stream from FPGA to Processor Template” on page 1-41

1-33



1 Create SoC Models

. “SDR Template” on page 1-45
. “HDMI Template” on page 1-35
. “Frame Buffer with HDMI Template” on page 1-38

1-34



HDMI Template

HDMI Template

The High-Definition Multimedia Interface (HDMI) template provides a simulation model for SoC video
streaming using SoC Blockset Support Package for Xilinx® Devices. Use this template to simulate and
analyze the effects of internal and external connectivity, such as HDMI I/O behavior on a vision
processing algorithm.

HOMI Imput FPGA HOMI Output

Pixal based processing
homifxData ] rdmiCataln hdmiDatalut B hdmiTeData

. *

rd L_r

e oo ey e HENT
HIOMI Rx : : HOM Tx

T O] FedmiCiin el At ORI et
r

FPGA

Required Products

* Computer Vision Toolbox™
* Vision HDL Toolbox™
* SoC Blockset Support Package for Xilinx Devices

Template Structure

HDMI video streams from an HDMI Rx block into the FPGA, which implements a video data
processing algorithm. The processed images stream to the HDMI Tx block.

FPGA pixel model uses VideoStream Connector blocks to connect different subsystems and to connect
to the HDMI I/O blocks. VideoStream Connector is required to generate each subsystem as a
separate IP in the implemented reference design from the model. Since the FPGA frame model is for
simulation purposes only and is not used for implementation, the Video stream connector blocks are
not modeled.

Modify Project

In MATLAB, on the Project Shortcuts tab, click Open FPGA pixel model. Open the FPGA
Algorithm Wrapper, as shown highlighted in green.

1-35



1 Create SoC Models

(1 y—w wihata rdCala pixeln Youl B{wDala  roData ——»{_1 )
hdrmilrataln hdmiDataChut
i Ly
mEI:rIEt;;-,.E@DIrDuI — == | ml:[rll&;m-.}.'ﬁﬂlrlﬂul —
hdmiCtriln hidmiCirCut
E4— womow  rdCisin WiCHIOuW  rdCirin 1
AlwaysFReady

Video Stream Connechor Video Stream Connectord
Terminate the wrCtrlOut as it

i not handied by HOMI input Create an always HIGH signal for ready

FPGA Algorithm Wrapper as it iz not generated by HDMI Output.

The FPGA Algorithm, also highlighted in green, contains feedthrough ports and signals.

h
N_l.
¥

1 W ielin pixelOut pixelln poelOut F———— (1 )

pixelln Ot

ral p| ctrlin cirOut

(X
bl cidCut oo =
P s T C2)

Ctrl Ot

Y
N_..

Y

rdyFromDown  rdyTolp —h-
- wyTolp  rdyFromDown ———— "3 )

rdyFromDown

FPGA Algorithm

Add your FPGA Algorithm in above subsystem \ideo Siream FIFO

You can modify the content of the FPGA algorithm model to incorporate your desired vision
processing algorithm, with complete simulation and code generation of the surrounding video
memory system. For pure algorithm design and investigation, click Open FPGA frame model in the
Project Shortcuts tab, and repeat this step.

See Also

“Use Template to Create SoC Model” on page 1-31 | “Create a New Project Using Templates”
(Simulink)

1-36



HDMI Template

More About
. “What Are Projects?” (Simulink)

1-37



1 Create SoC Models

Frame Buffer with HDMI Template

1-38

The Frame Buffer with High-Definition Multimedia Interface (HDMI) template creates a Simulink
project with models to simulate and generate a video application with external memory frame buffer.
This template forms the base for the “Histogram Equalization Using Video Frame Buffer” on page 5-
21 example. Use this template to simulate the full reference design of a video processing application
on an FPGA with HDMI I/O and connection to an external memory frame buffer for advanced image
processing designs.

HDMI Cutput

HOMI Input FPGA
Fingl based processing
sl ChatiChat radmiTeData
hdmiRxDaia
Ll 1
e [ ot 7
" S HOMI
HDMI cirl
el [~
e FREWIDL Memory
- Mamary Controler
e
BRI G : 3 |ooR ] 2 ]
Cals x é eww % ?a.:
3 g & E 3 £ H
3 5 3
Bt irin T l T l
2 5
b
[ - F 2 e
FHGA .E El % &
2 a
Dl H £ sl
: g lT s 'E
=
wils [Calls
DDR
1o Ol el
'
Frama Eufar

Required Products

* Vision HDL Toolbox
* Computer Vision Toolbox
* SoC Blockset Support Package for Xilinx Devices

Template Structure

HDMI video streams video data from an HDMI Rx block into the FPGA. The FPGA implements a color-
space transformation and your image processing algorithm. The processed images then undergo the
inverse color-space transformation and stream to the HDMI Tx block. The FPGA algorithm is
connected to the external memory frame buffer Memory Channel block configured in AXI4-Stream
Video Frame Buffer mode.

The FPGA pixel model uses Video Stream Connector blocks to connect different subsystems and to
connect to HDMI I/O blocks. This is required to be able to generate each subsystem as a separate IP
in the implemented reference design from the model. Since the FPGA frame model is for simulation
purposes only and is not used for implementation, the Video Stream Connector blocks are not
modeled.



Frame Buffer with HDMI Template

Modify Project

In MATLAB, on the Project Shortcuts tab, click Open FPGA pixel model. Double-click to open the
FPGA Algorithm Wrapper.

hdmiDataln

hdmiCtriln

e

Terminate the wrCtrlOut (ready signal)
as it is not handled by HOMI input

Dt Dt
WICHTIn  Connect FECHIOUL

wrCifOut FeCirlln

Mizeo Stream Connectar

—

P—

friBufRdData

frBufRACtriin

) uulﬁus“l]- ready
fraufwrCtrin |l SoC
Bus Sabector

pineFromPranmeBil

ctriFromPFrarmeBul

ridyFromFrameBuf

pineiC)

crioul

wrliata rdData

]
wrCHin gorel s rCHiCut

hdmiDataOut

hamiCrOut

pineaFrameBul] —| wiCtrout rdCirlin 4—'M|I|

etTaFrameBul|

FRGA Algorithm Wrapper

frEufWrData

AlwaysReady

Create an always HIGH signal for ready
as itis not by HDMI Cutput.

o

frBufWrCeriOut

frEufRACtiOut

Wideo Stream Connactor]

The FPGA Algorithm, highlighted in green, contains feedthrough ports and signals.

-

-

(0 _p——#pinelin it TeFrameBul
pleedin
{2} o cirlin cirToFrameiul
cirllin
pixelF roemFrameaBul Ot

pixedFromFrameBuf

ctriFromFrameBuf

cirlFromFrameBul

ala

et

Add your FPGA Algorithm in above subsystem

FPGA Algorithm

]
.

rdyToSne

=2"|

W piicelln

|

pixelOu

etrlin m etriOut
rdyTellp  rdyFramDown

=

\fideo Stream FIFO

—
—

-1

pixella piselOul

g

rdyToFrameBuf

(I
i i elrtCut

rdyTellp  ridyFramDicwn

pixel ToFrameBuf

cirlToFrameBuf

rdyFromFramaBuf

D

pixelOut

ciriCut

rdyFromSink

Video Stream FIFO1

I "o

La

=vEnd
"i e frameBufferReadSync

Modify the content of the FPGA Algorithm subsystem to incorporate your desired vision processing
algorithm, with complete simulation and code generation of the surrounding video memory system.

1-39



1 Create SoC Models

The pixelToFrameBuf and pixelFromFrameBuf ports provide access to the external memory

channel, Frame Buffer. For pure algorithm design and investigation, in the Project Shortcuts tab,
click Open FPGA frame model, and repeat this step.

See Also

“Use Template to Create SoC Model” on page 1-31 | “Create a New Project Using Templates”
(Simulink)

More About

. “What Are Projects?” (Simulink)

. “Histogram Equalization Using Video Frame Buffer” on page 5-21

1-40



Stream from FPGA to Processor Template

Stream from FPGA to Processor Template

Use the Stream from FPGA to Processor template to create an SoC Blockset model for designing a
datapath from hardware (FPGA) to software (Processor). To create a project using the "Stream to
Processor" template, follow the steps to “Create SoC Model Using SoC Blockset Template” on page 1-
31.

FPGA Memory Processor Testbench Output
Memary Conirolier
5 g DDR | o9 k|
I Tt SN
F a F F
[ & T ]
Samiphe bamed processing § % '% Ig
clata Cut | wiData E E‘ I T ".E Eﬂ'dEvnfr. | cataTask
O
(e = ¥ wrCin rdData ¥ dataln datailut * — —PD
I m
B
;¥ § RT Wector
t" miCirlin wrCinDul Do Do ; Scope
(. I
FPA Procgssor
Mamory Chanresl
HW S0
canfigReg FFFF) canfigReg

Register Channal

Required Products
For sample-based processing, no additional products are required.

For frame-based processing, DSP System Toolbox™ is required.

Template Structure

This template models a counter as the test data source and minimal logic for the FPGA and processor
algorithms. Use this template as a guide and replace the FPGA algorithm and Processor algorithm
with your own functionality. The FPGA algorithm is a simple multiplication performed on input data
from the test source and from a configReg parameter. The processor writes the configReg. This
parameter is modeled using the Register Channel block. Data from the FPGA algorithm is passed to
the processor through a Memory Channel block. The memory Channel Type parameter is set to
AXI4-Stream to Software via DMA, which models the DMA data transfer through shared
external memory.

The processor reads the computed data from the memory and performs additional computing, which
is implemented in the template as a pass-through wire. You can view the simulation results by double-
clicking the Vector Scope block in the testbench sink.

1-41



1 Create SoC Models

Modify Project
Modify the FPGA Model

In the MATLAB toolstrip, on the Project Shortcuts tab, click Open FPGA sample model to open
the FPGA model. In the model, two areas are highlighted green, which represents user code: one in
the FPGA Algorithm Wrapper block and one in the Test Source Wrapper block.

tasiData e wrilats rdlata ¥ datain datlnn = 1
dataCul

P wrvalin rafvalid I

nect

(i

vald

N
2

valoOu

vahd

w

valid ¥ wrlast '\cL.:s-'.—|
# Tlast ziBus
E-I— wrieady rdReady [ rd Clrl Gt
| TLastOut W tlast
(2w cilbue | ready B! reiCirin
TLast Stream Cannectar rECEAln -

D R

Tes1 Source Wrapper confgRey

FPGA Algarithm Wragper

* FPGA Algorithm Wrapper - Double-click to open the model. The algorithm wrapper contains a
green-highlighted subsystem named FPGA Algorithm. This block has two inputs and one output
and is implemented as a multiplier. Replace this block with your own FPGA algorithm. Add inputs
and outputs as required.

* Test Source Wrapper - This block includes a test source and is intended to generate stimulus as an
input to the FPGA algorithm. This block is implemented as a counter in this template. Modify the
test source to your needs, or replace it with an alternative source block.

Tip When your FPGA model includes more than one IB, you must define each IP as a subsystem and
connect the subsystems using a Stream Connector or Video Stream Connector block. For additional
information, see “Considerations for Multiple IPs in FPGA Model” on page 1-48.

To enable consistent simulation behavior, click Open FPGA frame model in the Project Shortcuts
tab and repeat this step. To simulate frame-based processing, you must have a DSP System Toolbox
license.

Modify the Processor Model

In the MATLAB toolstrip, on the Project Shortcuts tab, click Open Processor model. The
processor wrapper contains a blue highlighted subsystem representing the user code for the
processor algorithm. Open the Processor Algorithm wrapper and replace the Processor Algorithm
block with your desired algorithm.

1-42



Stream from FPGA to Processor Template

P: 50

dataTask

A 4
Trigger()

Done

Done

SoCData
(2) »{ dataln dataoutf——»(_ 1 )

dataln

dataOut

fpgaParam

fpgaParam

Processor Algorithm Wrapper

Modify the Register Channel

The top model of a template also includes a register channel to communicate between the processor
and the FPGA model. Use the register channel to configure the FPGA model, or to read and check
status registers. The Register Channel block in the template includes one register. To add additional
registers you must modify the register channel block parameters, the FPGA algorithm, and the
processor algorithm:

1

Add registers to the register channel - Double-click the Register Channel block to open the block
mask and add additional registers as needed. Adding registers creates additional ports on the
Register Channel block. For additional information, see Register Channel.

Add ports to the processor model - Navigate to the Processor Algorithm Wrapper model. To
navigate to the processor model, click Open Processor model on the Project Shortcuts tab.
Double-click Processor Algorithm Wrapper to modify it.

For write registers, add an output port to the module and add logic to drive a value to the added
output port. For read registers, add an input port and logic to process the information returned
from a read register. From the top model, wire the port to the Register Channel block.

Add ports to the FPGA model - Navigate to the FPGA Algorithm Wrapper model. To navigate to
the FPGA/Frame based processing model, click Open FPGA sample model on the Project
Shortcuts tab. Double-click FPGA Algorithm Wrapper to modify it.

For write registers, add an input port to the module and logic to process the information

returned from a read register. For read registers, add an output port and logic to drive a value to
the added output port.

1-43



1 Create SoC Models

For equivalent behavior when using a Simulink sample-based variant, repeat this step for the
sample-based processing model in the FPGA wrapper.
4 From the top model, wire the new port to the Register Channel block.

See Also

More About
. “Use Template to Create SoC Model” on page 1-31

1-44



SDR Template

SDR Template

The software defined radio (SDR) template provides a simulation model for an SoC reference design
available from Communications Toolbox™ Support Package for Xilinx Zynq®-Based Radio. Use this
template to simulate the full reference design and analyze the effects of internal and external
connectivity on and SDR algorithm, such as memory behavior and Radio Frequency (RF) I/O behavior.

To get started with SoC Blockset model for designing an SDR system, follow the steps to “Create SoC
Model Using SoC Blockset Template” on page 1-31.

[Teswnich Bink

FPda& Warmezny

........

[

L N |
RT

Srcedea

Mera Charnsl

e

Required Products

¢ Communications Toolbox
* SoC Blockset Support Package for Xilinx Devices

Template Structure

This template models an SDR transceiver composed of AD9361 transmitter and receiver blocks. The
transceiver connects an RF channel to the FPGA, which implements a receiver and a transmitter
algorithm. The FPGA algorithm includes a Test Source block, which generates a sinusoid signal and
drives it to the transmitter. The FPGA algorithm also includes a Tx algorithm, implemented as simple
pass-through wires, and an Rx algorithm, implemented as a gain block. A configuration register
srcSel is modeled in the FPGA to select the source of data for the Rx algorithm. The processor writes
the srcSel register to select either the test source from the FPGA or RF data from the transceiver.
This register is modeled using the Register Channel block. Data from the FPGA algorithm is passed to
the processor through a Memory Channel block.

Use this template as a guide and replace the Rx Algorithm and Tx Algorithm in the FPGA and the
Processor Algorithm in the processor with your own functionality. The memory Channel Type
parameter is set to AXI4-Stream to software via DMA, which models the direct memory access
(DMA) data transfer through shared external memory.

1-45



1 Create SoC Models

The processor reads the computed data from the memory, and performs additional computing
(implemented in the template as a pass-through wire). You can view the simulation results by double-
clicking the Vector Scope block in the testbench sink.

Modify Project
Modify the FPGA Model

In MATLAB, on the Project Shortcuts tab, click Open FPGA sample model. Then, open the FPGA
Transceiver Algorithm Wrapper. Notice three areas highlighted in green. These areas represent user
code and are located in the Receiver Algorithm block, in the Transmitter Algorithm block, and the
Test Source block.

Add your Test Source and Transmitter Algorithm inside

1-46

Ch1G_Chil_RF 2 )
RFTxDala
o
chig_cnt n1G_Chal_RF1 et
.,m] o Datatut ————{( 3 )
S datalut
Ridata %1 Rezohew Diata .
Ch1G_CrI_FPGA_Locpback| RiDataln ' m—@
RFTx\alid
m‘ﬂuml—@
o — Transmitter Migarithm validout

. " . . ' : R Algorith:
Test Source” and 'Transmitter Algorithm’ subsystems respectively ceiver Algonthm

Add your Receiver Algorithm inside
the 'Receiver Algorithm’ subsystem.

o 9

reacyFrom Dawn

The FPGA model includes the following sections for you to modify (highlighted in green):

» Test Source block - This block generates a 10-kHz sinusoid signal and drives it to the transmitter
algorithm. Modify the test source to your needs or replace it with an alternative source block.

* Receiver Algorithm subsystem - Inside the green-highlighted subsystem named Rx Algorithm,
there is a block labeled Algorithm. The algorithm takes I/Q data as input and output with a valid
signal. Replace this block with your own Rx algorithm.

* Transmitter Algorithm - Inside the green-highlighted subsystem named Tx Algorithm, the
algorithm has an input from the test source and two output signals: one to the RF channel and one
to the FPGA. Replace this block with your own Tx algorithm.

To enable consistent simulation behavior, in the Project Shortcuts tab, click Open FPGA frame
model and repeat this step.

Modify the Processor Model

In MATLAB, on the Project Shortcuts tab, click Open processor model. The subsystem highlighted
in blue represents the user code for the processor algorithm. Open the Processor Algorithm wrapper



SDR Template

and replace the internal Processor Algorithm block (also highlighted in blue) with your desired

algorithm.
Trigger
Processor Algorithm

mg data »| dataln dataOut|——» ("2 )

data % -+ dataCut
ﬁl%ceiver_algurithm_iﬁ'ﬁ‘.é'? -

done Terminatar

Stream Read

Modify the Register Channel

The top model of a template also includes a register channel to communicate between the processor
and the FPGA model. Use the register channel to configure the FPGA model or to read and check
status registers. The Register Channel block in the template includes one register. To add additional
registers you must modify the register channel block parameters, the FPGA algorithm, and the
processor algorithm:

1

Add registers to the register channel - Double-click the Register Channel block to open the block
mask and add additional registers as needed. Adding registers creates additional ports on the
Register Channel block. For additional information, see Register Channel.

Add ports to the processor model - Navigate to the Processor Algorithm Wrapper model. To
navigate to the processor model, click Open Processor model on the Project Shortcuts tab.
Double-click Processor Algorithm Wrapper to modify it.

For write registers, add an output port to the module and add logic to drive a value to the added
output port. For read registers, add an input port and logic to process the information returned
from a read register. From the top model, wire the port to the Register Channel block.

Add ports to the FPGA model - Navigate to the FPGA Algorithm Wrapper model. To navigate to
the FPGA/Frame based processing model, click Open FPGA sample model on the Project
Shortcuts tab. Double-click FPGA Algorithm Wrapper to modify it.

For write registers, add an input port to the module and logic to process the information
returned from a read register. For read registers, add an output port and logic to drive a value to
the added output port.

For equivalent behavior when using a Simulink sample-based variant, repeat this step for the
sample-based processing model in the FPGA wrapper.

From the top model, wire the new port to the Register Channel block.

1-47



1 Create SoC Models

Considerations for Multiple IPs in FPGA Model

When your FPGA model includes more than one block for which you'd like to generate HDL using
HDL Coder, you must use a connector model to connect your blocks.

For additional information, see Stream Connector and Video Stream Connector blocks.

1-48



Create an SoC Project Application

Create an SoC Project Application

A system-on-chip (SoC) project developed using the SoC Blockset typically contains many diverse
systems that make up a the complete application. These systems can include:

* Embedded processors with timer-driven and event-driven tasks.

* FPGAs with custom IP logic and timing.

* External memory systems with interaction to embedded processors and FPGAs.

* /O device interaction, such as TCP/IP and UDP connections.

This example shows the steps to create an SoC application, using the features of the SoC Blockset, as
a Simulink project. To begin, see “Project and Top-Level Model” on page 1-50.

Note This project is equivalent to the project automatically created by the “Stream from FPGA to
Processor Template” on page 1-41. Templates are the recommended and preferred method for
creating new projects. This example should be used for information purposes only.

See Also

“Use Template to Create SoC Model” on page 1-31 | “Stream from FPGA to Processor Template” on
page 1-41

1-49



1 Create SoC Models

Project and Top-Level Model

An SoC application model developed using the SoC Blocksetcombines multiple subsystems and
reference models. Each subsystem and reference model maps to a particular feature of an SoC
device. Organization of the models and shared configuration settings requires a Simulink project.

1 Create a new SoC Blockset project named SampleSoCApplication. Creating a new project
automatically creates a new project folder with the same name. For more information on creating
projects, see “Create a New Project From a Folder” (Simulink).

Open a new Simulink model. Save the model as soc_hwsw_top.slx into the project folder.

In MATLAB, on the Project tab, in the Tools section, select Run Checks > Add Files and add
the soc_hwsw_top.slx model file to the project.

4 In Simulink, configure the soc_hwsw_top.slx model to as an SoC application. On the Apps tab,
under Setup to Run on Hardware, click System on Chip (SoC).

5 In the System on Chip (SoC) pop-up window, select Hardware Board > Xilinx Zynq ZC706
evaluation kit. Click Finish.

Note You can optionally choose any of the available hardware boards based to suit your system
requirements.

6 On the System on Chip tab, click Hardware Settings. On the Configuration Parameters
dialog bogx, in the Selver tab, set Solver selection > Type to Variable-step. Click OK.

7 Create three box areas and label them as FPGA, Memory, and Processor. For more information
on creating box areas, see “Box and Label Areas of a Model” (Simulink). In the following
sections, these areas are populated for various aspects of your SoC application.

FPGA Mamory Processor

8 Create a new MATLAB function to initialize variables used throughout the project.

function soc hwsw init
% Initialize the model wide variables and set them in base workspace.

SourceSTime = le-7;



Project and Top-Level Model

FrameSize = 1000;
ProcSTime = SourceSTime*FrameSize;
FPGASTime = SourceSTime;

FPGAFrameSize = 1;

assignin(‘'base', 'ProcSTime',ProcSTime);
assignin(‘'base', 'FPGASTime',FPGASTime);
assignin('base', 'SourceSTime',SourceSTime);
assignin('base', 'FPGAFrameSize', FPGAFrameSize);
assignin('base', 'FrameSize',FrameSize);

end

In the project folder, save the file as soc_hwsw_init.min a new subfolder, utilities and add
the file to project.

See Also
“Software and Task Management on Processor” on page 1-52

More About

. “Create a New Project From a Folder” (Simulink)
. “Box and Label Areas of a Model” (Simulink)

1-51



1 Create SoC Models

Software and Task Management on Processor

1-52

The processor system in this SoC application reads data from the external memory following a write
from the FPGA to that memory. Since FPGA writes and interaction with external memory are
asynchronous, the processor uses an event-driven task to read from memory. The software also
manages a register on the FPGA that specifies a multiplication factor to be used in the FPGA
algorithm.

Processor Model

1

Open a new Simulink model. Save the model as soc_hwsw_proc.slx into a new subfolder,
named processor, in the project folder. Add the soc_hwsw _proc.slx model to the project.

In Simulink, configure the soc_hwsw_top.slx model to as an SoC application. On the Apps tab,
under Setup to Run on Hardware, clickSystem on Chip (SoC).

In the System on Chip (SoC) pop-up window, select Hardware Board > Xilinx Zynq ZC706
evaluation kit. Click Finish.

Note The processor model must use the same hardware board and solver configuration
parameter settings as the top level model.

In the model, using a Function-Call Subsystem block, Asynchronous Task Specification block,
Inport block, and Outport blocks, create the following system.

P 50

dataTask
Triggeri)
Done
SoCData
@:b dataln dataOut
dataln dataOut
fpoaParam
fpgaParam

Processor Algorithm Wrapper

In the dataTask block dialog mask, check Signal Attributes > Output function call to expose
a function call port on the outside model.

In the Asynchronous Task Specification block dialog mask, set Task priority to 50.

Note The task priority of the Asynchronous Task Specification block must match the priority of
task in the Task Manager block driving this task.




Software and Task Management on Processor

Task Processing

The Processor Algorithm Wrapper subsystem reads data from the external memory only after
each write to the external memory by the FPGA.

1  Openthe Processor Algorithm Wrapper block.

2 Using a Stream Read block, Constant block, Data Type Conversion block, and Subsystem blocks,
create the following model.

fi)

NOTE: Data input is always 32 bits.

Stream Read wnt32 {1000) —
mag data » o iataln datacut —(_2 )
dataln dataCut
ipzs2mm
— done . vahd —p—]
Dione

Processor Algorithm
Stream Read

Add your Processor Algorithm in above subsystem

1 » In out —n-

fpgaParam

MultiplicationF actor

Register Channel Write

Open the Stream Read block dialog mask. Set Number of buffers to 6.
Open the Data Type Conversion block dialog mask and set Output data type to uint16.

The Processor Algorithm subsystem serves as a base to develop your own processing
algorithm.

6 Openthe Register Channel Write subsystem block.
Add a Register Write block to create the following model.

Register Write

fdev/mwsinewavegenerator_ipd
D104

8 Open the Register Write block dialog mask. Set Device name to /dev/
mwsinewavegenerator ip0 and Offset address to hex2dec('100"').

1-53



1 Create SoC Models

Top Model

In the project folder, open the model soc _hwsw top.slx.
Add a Subsystem block into the Processor area and label the block Processor.

In the Processor subsystem, using the Task Manager block and Model block, create the
following system.

EOC_hwew_proc
- ey dataOut —F
ca1aFlEadTa5ﬂ% wdataReadTask ™ dataTask datalut
dataTask
Done :h-@
Done
2 = dataln
dataln : fpgaParam :
1 fpgaParam
Processor - Frama based processing
4  Open the Model block dialog mask and set Model name to soc_hwsw_proc.slx.
5 Open the Task Manager block dialog mask. Set the task Name to dataReadTask and set the
Priority to 50. In the Simulation tab, set the Mean, Min, and Max to 8e-05. Click OK.
See Also
Task Manager
More About

“What is Task Execution?” on page 1-2
“Event-Driven Tasks” on page 1-4
“Task Duration” on page 1-16



User Logic on FPGA

User Logic on FPGA

In this SoC project example, the FPGA generates test data and process it in FPGA algorithm before
passing it to processor using shared memory.

Sample Based Model

1 Open a new Simulink model. Save the model assoc_hwsw fpga sample.slx into the subfolder,
named referencedmodels, in the project folder.

2  On the Modelling tab, click Model Settings. On the Configuration parameters window, in the
Hardware Implementation panel, set Hardware board to None and set Device vendor to
ASIC/FPGA. In the Solver panel, set Solver selection > Type to Fixed-step. Click OK to
apply the changes and close the configuration parameters.

Note SoC Blockset requires that the FPGA reference models specify the intended deployment
hardware, in this case an FPGA.

3 In the new model, using Stream Connector block, SoC Bus Selector block, SoC Bus Creator
block, and Subsystem blocks, create the following system.

tesiCata wriata rdlata datain datatut @
dataul
s wrisalid e '\c‘u‘alvd—| v
Connect valoOut | vaid
wrLast rollast
walid —| }
¥ Tlast <girBus —I".
E-I— wrieady rdReady [ rd Clrl Ot
| TLasbius = tlast
a—» :I'll:lu::_:: ready el reCirin
TLast Stream Connechor rdC Al
E:I—I'mnhgﬂag ressdy
Tes) Source YWrapper confgReg
FPGAAIgarithm Wragper

Add your Test Source inside
‘Test Source Wrapper” subsystam

Add your FPGA Algorithm inside the
"FPGA Algarithm Wrappar' subsystem

Note The signals for rdCtrlIn and rdCtrl0ut must use bus signal types set to
StreamS2MBusObj and StreamM2SBusObj, respectively.

Tip When your FPGA model includes more than one IP, you must define each IP as a subsystem
and connect the subsystems using a Stream Connector or Video Stream Connector block. For
additional information, see “Considerations for Multiple IPs in FPGA Model” on page 1-48.

In the SoC Bus Creator block dialog mask, set Control type to Valid.

The Test Source subsystem simulates a free-running counter. Open the Test Source
subsystem and create the following system.

1-55



1 Create SoC Models

outt e 1 l

testData

Test Souwrce

Add your 'Test Source” in the above subsystem

1 ez )

valid

All data is valid

1 SHERD

TLast

Mo-Op Tlast

Note The sources, ALl data is valid and No-Op Tlast, must produce a signal with
boolean data type.

Test data (Counter)

Replace 'Test data {counter) source with your test source

A
R p 1 p 1)

count

5 The FPGA Algorithm subsystem simulates the multiplication of streamed data. Open the FPGA
Algorithm subsystem and using an Enabled Subsystem, Logical Operator, and Data Type
Conversion blocks, create the following system.

1-56



User Logic on FPGA

D (2
valid validOut
Tlast TLastCut
¥
Il
dataln
dataln -
wink
» —
dataOut i I
dataCut
€ T S
configReg MOTE: Data output must be 32 bits
FPGA Algorithm

Add your FPGA algorithm in above subsystem

«» > (3
rdCirlin raady
Top Model

1 In the project folder, open the model soc_hwsw top.slx.
2 Add a Subsystem block into the FPGA area and label the block FPGA.
3 In the FPGA subsystem, using the Model block, create the following system.

soc_hwew_fpga_sample
configReg dataOut 1)
configReg dataCut
rdCiriin rdCHiOutf———— (" 2 )
rdCtriin e rd CtriCut

Sample based processing

4  Open the Model block dialog mask and set Model name to soc_hwsw_fpga_sample.slx.
The “Stream from FPGA to Processor Template” on page 1-41, the FPGA subsystem uses a model

variant to select between the sample based model developed in this section and a frame based model.
The frame based model allows faster simulations but does not support code generation.

See Also
SoC Bus Creator | SoC Bus Selector | Stream Connector

1-57



1 Create SoC Models

More About
. “AX14-Stream Interface” on page 1-23

1-58



Memory and Register Channel Connections

Memory and Register Channel Connections

The memory channel models the data transfer from FPGA to processor using shared external memory.
The register channel models the control of FPGA logic from processor. You can both configure the
FPGA logic and read the status of FPGA logic from processor. The following sections show how to
create these channel connections.

Memory Channel Connection

Open the soc_hwsw_top.slx model.

Add a Memory Channel block and a Memory Controller block to the Memory area. Together,
these blocks model the memory connection through DDR between the processor and FPGA sides
of your application.

FPGA Mermory Processor
Memory Contraler

o000

DR

burtiDom 1

bursDomZ

Sample based processing

dats Ol

I corfigRey dialaOul I wrilala

wrlur etilone

vBurstReq f— burstReql
e [l y
st — bursFleg

roBu st

o

Wil e dialaTisk
E

DDR

J7+MCu1h ! !ﬁ sl Dhaim | — TpgaParam
FaCln FaC 0t — Wit Dt Dt (H— g - -
I
Processar
FPGa, Meermiary Chamng

3 Open the Memory Controller block dialog mask. Set Number of masters to 2. In the Advanced
tab, the Memory Controller automatically inherits parameters from the Hardware board
specified in the model configurations.

4 Connect the pair of Memory Controller burst ports, burstReq and burstDone, to the read and
write burst request ports of the Memory Channel block.

5 Inthe model, open the Memory Channel block dialog mask. Set Channel type to AXI4-Stream

to Software via DMA. Set Buffersize (bytes) to FrameSize*4 and Number of buffers to 6.
Click OK.

Register Channel Connection

1 Add a Register Channel block to the model and connect the block to the Processor and FPGA
subsystems as shown in the following image.

1-59



1 Create SoC Models

1-60

FPGA

Sample based processing

e configReg LEiFaT

Jf-. wiCIrln
1 Wit Ot

[==h 5] [ e T
L
FPGR,

Memory
Memory Contraler
o000
Pod ¥
[= ===z
§f § == { §
F i F E
T r T F
= r = r
§ 3 -
| wraia g é—' E i FeEvent
DDR B

o -

rdDona

Processor

data Dl

e e Tics k.

TpgaParam

et

Mdernary Charnel

Do
Processar —‘

cordighieg

—_—
W

[CEr] canfighieg

Regster Channel

2 Open the Register Channel block dialog mask. Add a new register with these properties.

Register

Direction

Data type

Dimension

configReg

Write

uint8

1

Set Register write sample time to FPGASSTime. Click OK. This sample time is set in the file

soc_hwsw_init.m.

See Also

Memory Controller | Memory Channel | Register Channel

More About

. “Memory and Register Channel Connections” on page 1-59




Simulation and Analysis

Simulation and Analysis

This set of steps runs the soc_hwsw_top.slx model created in the previous steps. A visual of the

processor output data shows the complete SoC application.

1 In the project folder, open the model soc_hwsw_top.slx.
2 Using a Scope block and Rate Transition block, update the model as shown in this diagram.
FPGA Memory Processor Testbench Output
Memory Coniraler
T 3 ¥ g
g § TToon  § 3
A 3
Eample barsed processin g H g 2
’ ’ E g % ﬁ dataCul oJ H- - D
o configRiag dataut lwoaia @ ] g ﬁ-dswm o ek m m
= : DDR 2 AT Vickor
Spopa
Hie wrnCa I @ﬁ sdDain f—— TpaaParam
raCiln Gl —— wiCan Ot i Do pit— o
(@
FPGA& Mdermary Charnael e
(7w W]
corfighieg [Fr] configRig
Riegster Chanrel
3 Run the model and open the Vector Scope.
The display in the Vector Scope shows the counter output.
See Also
“Use Template to Create SoC Model” on page 1-31 | “Stream from FPGA to Processor Template” on
page 1-41

1-61




1 Create SoC Models

Custom Hardware Board Configuration

1-62

A custom hardware board is a hardware board that not explicitly supported as a default selection in
SoC Blockset. To create an SoC project to simulate a custom hardware board, configure a Simulink
project as follows:

1

Create or open an existing SoC project. For more information on creating SoC projects, see “Use
Template to Create SoC Model” on page 1-31.

In the top level model, open the Simulink configuration parameters dialog. In the Hardware
Implementation panel, set Hardware board to Custom Hardware Board.

In the Hardware Implementation panel, open the Target hardware resources > Processor
group. Set Number of cores to match the number of cores available on your SoC processor. The
cores available in your processor can be found from the SoC manufacturer's data sheet.

Open the Target hardware resources > FPGA design (mem controllers) group and set the
“FPGA design (mem controllers)” configuration parameters according to your SoC specifications.
For information on deriving “FPGA design (mem controllers)” parameters, see the Memory
Controller block which shares these parameters.

Open the Target hardware resources > FPGA design (mem channel) group and set the
“FPGA design (mem channels)” configuration parameters according to your SoC specifications.
For information on deriving “FPGA design (mem channels)” parameters, see the Memory
Channel block which shares these parameters.

Note The Custom hardware board selection only supports simulation. For code generation, use
one of the provided SoC Blockset hardware board selections.

See Also
“Hardware Implementation Pane”



Build Error for Rapid Accelerator Mode

Build Error for Rapid Accelerator Mode

SoC Blockset does not support “Rapid Accelerator Mode” (Simulink) simulation of models.

Attempting to use SoC Blockset blocks and features in model running rapid accelerator mode results
in undefined behavior.

In SoC Blockset models, set the simulation mode to normal mode, accelerator mode, or external
mode.

See Also

More About
. “Rapid Accelerator Mode” (Simulink)

1-63






Simulate SoC Applications

“Task Overruns and Countermeasures” on page 2-2

“Task Execution Playback Using Recorded Data” on page 2-7
“Task Priority and Preemption” on page 2-8

“Multicore Execution and Core Visualization” on page 2-11
“Recording Tasks for Use in Simulation” on page 2-14

“Task Visualization in Simulation Data Inspector” on page 2-15
“Simulation Performance Plots” on page 2-17

“Simulation Diagnostics” on page 2-26

“External Memory Channel Protocols” on page 2-30

“Record Data from Hardware I/O Devices” on page 2-32

“Use Memory and I/O Device Data in Processor Simulation” on page 2-33
“Using the Algorithm Analyzer Report” on page 2-34




2 Simulate SoC Applications

Task Overruns and Countermeasures

Event-Driren
Task

Timer-Driven
Task

2-2

With finite processing resources available in a system, an execution instance of a task might not be
able to complete before the start of the next task instance. This task overrun results in the start of the
next instance of the task execution to be delayed. As a result, the next task must catch-up to avoid
another overrun. This diagram shows a simplified execution of two tasks: a high-priority event-driven
task and a low priority timer-driven task.

t0

Chwerrun

| k4
Task Running
in 5
Catch-Up ’
interrupt 1 12

I:I Task Preempied I:I Task Running - Kernel Latency

A Fundamental I Switch to Lower Switch to Higher

ti Time Step Hit Priornity Task I Friornity Task

Due to the long execution time of the event-driven task, the first execution instance of the timer-
driven task overruns into the start of the next execution instance. This overrun puts the second
execution instance into catch-up mode.

When tasks overrun repeatedly, an execution backlog can develop in the application, potentially
breaking the system. These sections discuss typical countermeasures to either reduce the chance of
task overruns or handle situations when tasks overrun, preventing an execution backlog.

Reduction of Task Execution Interval

For timer-driven tasks, reduce the chance of overruns by providing the task with more execution
time. Increase available execution time by decreasing the task rate, which is equivalent to increasing
the time between task execution instances. This extra time provides each task execution instance a
better chance of running to completion, even in the presence of other tasks. The rate of a timer-
driven task can be adjusted in the Task Manager block by setting the Period parameter.

Reduction of the task execution interval cannot be guaranteed in all cases. Some of these cases
include:

» For event-driven tasks, multiple events can occur at the same time, depending on the priority of
the event-driven task. This case forces other tasks to overrun due to lack of resources.



Task Overruns and Countermeasures

* Real-time requirements where a task, timer or event driven, must respond to the latest event
trigger signal and new data regardless of whether previous task instances completed. This case
fixes the task execution interval to a value determined by the design requirements.

In these cases, distributing tasks across multiple processor cores or allowing tasks to drop can be
advantageous depending on the design requirements.

Distribution of Tasks Across Multiple Processor Cores

Most modern embedded processors provide multiple cores where tasks can be executed. By
distributing tasks across these multiple processor cores, tasks can run simultaneously without
directly competing for processing resources and reducing the chance of task overruns. In SoC
Blockset, a task can be set to run on a specific processor core in the Task Manager block by setting
the Core parameter to the core number. For more information on the selection, execution, and
visualization of tasks on multiple cores, see “Multicore Execution and Core Visualization” on page 2-
11.

Dropping Overrunning Tasks

In some designs, a task must execute when the task trigger signal occurs or with the latest state of
the system. If a task has been triggered and a new task trigger occurs, the new instance can be
removed or dropped. After dropping the execution instance of the task that overran the next
execution instance starts when the event trigger signal arrives. To drop tasks when an overrun
occurs, in the Task Manager block, enable the Drop task that overrun parameter.

Task Drops in Simulation

This example shows how to configure a task in the Task Manager block to drop when a task overrun
occurs during simulation.

Task Overrun Without Task Drops

This model simulates a software application running on an ARM processor. A Task Manager block
schedules the execution of the Timer Driven Subsystem, inside the Software Application Model
Reference block. A Random Number block simulates a data source that the timer-driven task
samples.

g:
o= L"-,T mer_Task For
ey : soc_task_taskdrops_softwars
- D105
| Original Dat P d Dat »—]
Original Data B rocessedbiata Processed Data —

Software Application

ARM Processor

2-3



2 Simulate SoC Applications

In this model, the task duration of 0.6 seconds exceeds the task period of 0.5 seconds causing the
task to overrun. Click the Run button to build and run the model. When the model finishes running,
the Simulation Data Inspector shows the task execution timing.

W Timer_Task

Running

Freempted

Wigiting 4

1 2 3 4 5 B 7 z a 1

Timer_Task_drop

0.8 4

0.6 4

0.4 4

0.2 4

Inspecting the execution timing of the tasks shows that the start of each following task instance is
delayed from the expected 0.5-second interval by the overrun of the previous task. Even when Drop

2-4



Task Overruns and Countermeasures

tasks that overrun is set to off, no more than 2 instances of a task can overrun execution. As
shown in Timer_ Task drop signal, the additional task instances that overrun drop automatically.

Task Overrun With Task Drops

Using the same previously shown model, rather than overrunning the timer-driven task, the task
drops so the next task instance starts at the 0.5-second interval. Open the Task Manager block dialog
mask, and select Drop tasks that overrun. Run the model again. Open the Simulation Data
Inspector to view the task execution and dropped task instances.

2-5



2 Simulate SoC Applications

2-6

W Timer_Task

Running

Freempted

Waiting

i

0.8 4

0.6 4

0.4 4

0.2 4

B Timer_Task_drop

See Also
Task Manager

More About

“Multicore Execution and Core Visualization” on page 2-11

0




Task Execution Playback Using Recorded Data

Task Execution Playback Using Recorded Data

The Task Manager block can replay the execution timing of a task recorded from either a previous
simulation of that task or from the execution of a task on a processor in an SoC device. To replay a
task timing data file, use the following procedure:

In a Simulink model, open the Task Duration block dialog box.

Select a task from the list of available tasks.

In the Simulation tab, select Play back recorded task diagnostics file.

Click Browse to select a taskname. csv file from a previous task simulation.

A W N -

While using the data file for the task timing information, the Task Manager still manages individual
tasks according the scheduling of the system and can be preempted by other higher priority tasks in
the model. For more information on task priority and preemption, see “Task Priority and Preemption”
on page 2-8.

See Also
Task Manager

Related Examples

. “Task Execution” on page 5-58

More About

. “Task Duration” on page 1-16

2-7



2 Simulate SoC Applications

Task Priority and Preemption

Task priority informs the operating system of the importance of the task and the order in which a
group of waiting tasks needs to execute. By setting the priorities of the tasks in the Task Manager
block, tasks that need to react to critical or time-sensitive events can preempt lower priority and
background tasks.

Tasks listed in the Task Manager block execute in a rate monotonic order. Rate-monotonic order
requires the task with the highest static priority in the preempted state to immediately preempt all
other tasks and enter the running state. Timer-driven tasks with shorter periods get higher static
priorities. If two tasks with equal priority in the preempted state, when no other running task exists,
then tasks execute in a first-in, first-out (FIFO) order.

Each event-driven task listed in the Task Manager block can be set with an explicit execution priority.
Timer-driven tasks inherit their priority from the base rate task priority of the model. In the
configuration parameters, the base rate task priority is set by the Hardware Implementation >
Hardware board settings > Operating system/scheduler > Base rate task priority parameter.
The following example shows the interaction between a pair of competing tasks.

Preemption of Low Priority Task by High Priority Task

This example shows how the task manager changes the state of two tasks, preempting the lower
priority task to allow the high priority task to run.

Task Manager with High and Low Priority Tasks

The following model simulates a software application with a high and low priority task. A Task
Manager block schedules the execution of the task subsystems inside the Software Application Model
Reference block.

| Lowerienty
HighPriority EEnt_ . |

) A . i soc_task_taskpreemption_software
bz S D[0.5] 2

UDF
. From input port

langth 1001
a 1010 | =*
valid msg High Priority Data

evant e | High Priority Trigger

" Processed HP Dataf——#-2

" Processed LP Data}——#»—]

2-8

Loy Priority Data

Softwara Application

ARM Processar

The low priority, timer driven, task is scheduled to run every 0.5 seconds with a duration of 0.2
seconds. The high priority, event driven, task is scheduled to run when a new UDP data packet
arrives, which occurs every 1.1 seconds and requires a task duration of 0.5 seconds. As a result of
these timing conditions, the low priority task gets preempted to allow the high priority task to run.

Simulation Showing Task Preemption

Click the Run button to build and run the model. When the model finishes running, open the
Simulation Data Inspector to see the results of the simulation. Select the HighPriority and
LowPriority task waveforms to see the task preemption.



Task Priority and Preemption

Running

W HighPriarity

Waiting -

Running

Freempted

Waiting -

m LowPriority

Inspecting the Simulation Data Inspector at time 1.0, the low priority task starts executing until time
1.1, getting preempted by high priority task. The low priority task then runs to completion at 1.7



2 Simulate SoC Applications

seconds, overrunning the next instance of the low priority task that should have started at 1.5
seconds.

See Also
Task Manager

More About

. “What is Task Execution?” on page 1-2
. “Task Overruns and Countermeasures” on page 2-2

2-10



Multicore Execution and Core Visualization

Multicore Execution and Core Visualization

SoC Blockset enables simulation of task executions as they behave on a multicore processor. In
multicore simulations, tasks can run simultaneously when assigned to different processor cores.
Additionally, assigning lower-priority tasks to unique cores prevents these tasks from getting
preempted, giving greater confidence to the final application.

Specify the Core for a Task

To set the processor core on which a task executes, open the Task Manager block dialog mask. Select
a Task from the available tasks. In the task properties, set Core to a nonnegative integer value.
During simulation, task instances execute on the specified core, subject to the preemption by other
tasks executing on the same core. For more information on task preemption, see “Task Priority and
Preemption” on page 2-8.

Core Visualization in Simulation Data Inspector

SoC Blockset provides a view of the processor cores on the Simulation Data Inspector. This diagram
shows the visualization of the core activity relative to the task state.

Coreq Task1 [dle Task1 [dle Task1 ldle

Coare 1 Task '= Task 3

Task? | Task3a | Idle Task 2

——— T Y — — —

Task 1
on Core 0

Task 2
on Core 1
*

Task 3
on Core 1

t0 11 12
|:| Task Preempted |:| Task Running - kernel Latency
? Fundamental I Switch to Lower Hi Sr:xgrt*cﬁri?rinr
I Time Step Hit Priority Task I Y Task

2-11



2 Simulate SoC Applications

In the Simulation Data Inspector, the signal corei shows the current task executing on that core.
When the core activity displays as idle, then that core has all tasks in the waiting state, and the
kernel can use that core for background tasks that are not part of the main application.

Note If a task instance does not run to completion during the simulation time, the related core status
over that instance appears empty in the Simulation Data Inspector display.

Multi-Core Task Execution

This example shows the simulation of multiple tasks, managed by the Task Manager block, execute on
multiple cores with display the core activity shown in the Simulation Data Inspector.

This model simulates a software application, running on an ARM processor, with 3 timer-driven tasks.
A Task Manager block schedules the execution of the tasks, inside the Software Application
Model Reference block. Tasks 1, with a period of 0.01 seconds, executes on Core 0. Tasks 2 and
3, with periods of 0.02 and 0. 03 seconds, respectively, execute on Core 1.

Taski b-—-—- . soC_task_multicore_software
E"= ome-e e DA[0.01]
o=,  TeskZp-—--- # D2[0.02]
L) -~~~ D3[0.03
e Taskd .- [0.05]

Software Application

2-12

ARM Processor

Click the Run button to build and run the model. When the model finishes running, open the
Simulation Data Inspector display to see the results of the simulation. Select the Core 0 and Core 1
to view the core execution status.



Multicore Execution and Core Visualization

W Core: 0 Core: 1

Task2 Task3 Task2 Taszk3 Taszk2
o5 r
' Task1 Y Taske I Taski Y\ Taski Y Tasks |
:| L
a :I.IL::IE :I.IL: 10 :I.IL: 15 il [,:2!} :I.IL:?_E :I.IL:3E- 3.[;35 :I.IL:-1-II- :I.IL:4L=.- 0.0:50

As shown in the Simulation Data Inspector, the core executes either the running task or moves to an
idle state, to perform background kernel tasks. Additionally, as two cores are used in this application,
high-priority, Task1 executes at the start of each trigger event. Similarly, Task2 and Task3 do not get

preempted by Taskl. As a result, the application makes better use of the available processor
resources.

See Also
Simulation Data Inspector | Task Manager

More About

. “Task Priority and Preemption” on page 2-8

2-13



2 Simulate SoC Applications

Recording Tasks for Use in Simulation

2-14

Each time a model containing a Task Manager block runs in simulation or on an embedded processor
with external mode, Simulink records task execution data and statistics as a set of files. A diagnostics
folder, with name modelname diagnostics, contains two subfolders, sim and hw, for the data from
simulations and recorded from hardware, respectively. Each run generates a unique folder, inside
either the sim or hw folders, labelled by the date and time of the run. The folder name uses a time-
date format, YYYY MM DD _hh _mm_ss, representing the year, month, day, hour, minute, and second,
respectively.

Note To enable external mode in an SoC model, use the SoC Builder app.

Each run generates a set of metadata, statistics, and execution recording files, including:

* TaskInfo.mat - This file contains task information, including the task names and types, used
internally by the SoC Blockset.

* metadata.csv - This file contains the derived mean and standard deviation for all tasks recorded
in the profile. log data file. The metadata. csv file can be used directly in the Task Manager
block to set task duration statistics. For more information on setting task duration, see “Task
Duration” on page 1-16.

* TaskName.csv - This file contains the recorded task execution data as a comma-separated
variable list. The first column contains the start time of each task instance. The second column
contains the task durations for each task instance. If a task is dropped, lost, or corrupted, the start
time and duration of that task execution instance are both replaced by - 1. For more information
on using recorded task execution timing in simulation, see “Task Execution Playback Using
Recorded Data” on page 2-7.

Note

» Tasks recorded from an embedded processor only start capturing task execution after successful
connection of external mode. The lost start-up in task execution recordings from hardware should
be considered when comparing timing results to recordings from simulation.

* When executing on an embedded processor, task execution recordings times will continue to run
until the completion of all task instances scheduled in the Task Manager prior to the stop time of
the model.

See Also
Task Manager

More About

. “Task Duration” on page 1-16

. “Task Execution Playback Using Recorded Data” on page 2-7
. “Profile Task Execution on Processor” on page 4-6



Task Visualization in Simulation Data Inspector

Task Visualization in Simulation Data Inspector

The Simulation Data Inspector display provides a direct view into the execution timing, the task state,
and the execution of tasks in simulation and profiled from generated code running on hardware. Each
model run, in simulation or on hardware using external mode adds task execution timing and data to
the current Run. This image shows the Simulation Data Inspector display with a Run captured from
an SoC Blockset model.

Q 4

Inspect Comonre W Taski W Task2 W Taskd
Filer Signals =

ke

rrrrr o
~ Run 1: soc_task_multicore_application_instru...
Task1:Droppedinstances
Task2 Droppedinstances
Task3:Droppedinstances
v|  Taski
V| Tesk2

v Task3

« @O B ®

Core: 0

0005 0010 0.015 0.020 0.025 0.030 0035 0.080 0045 0.050 0055 0.000 0005 0070 0075 0.080 0.085 0.080 0.095 0.100)

Core:0 m Core: 1

Core: 1

[ Tasic | s | Tesi2 | Tesa [ Tesie Y 1ate Y Tasiz | e | Tesia | s

O P »

Taski Idle | Taski Idle | Taski I | Taskt I | Taskt Idle | Taski Idle | Taski Idle | Taski 1. | Taski 1. | Taski Idle

0005 0010 0015 0.020 0.025 0.030 0035 0040 0045 0050 0055 0000 0005 0070 0075 0080 0085 0.080 0.005 0100

= Task1:Dr Task2  Task:

Archive

Properties 0.005 010 0015 0020 025 agz0 agzs g4 aces 050 0gss oge0 oges 0070 0075 0.080 0985 0.080 0005 0.100

Each Run contains these task related signal types:

* taskname - The execution instance state for the task, with name taskname, defined in the Task
Manager block. For more information on task execution states, see “What is Task Execution?” on
page 1-2.

Note If a task instance does not run to completion during the simulation time, the final task
execution instance does not render in the Simulation Data Inspector display.

* taskname drop - An impulse indicating the scheduler dropped an execution instance of task,
taskname drop. For more information on task drops, see “Task Overruns and Countermeasures”
on page 2-2.

* Core: n - Execution activity on core n of the simulated processor. For more information on
multicore execution and visualization, see “Multicore Execution and Core Visualization” on page
2-11.

Note If a task instance does not run to completion during the simulation time, the related core
status over that instance does not render in the Simulation Data Inspector display.

See Also
Simulation Data Inspector | Task Manager

2-15



2 Simulate SoC Applications

More About

. “What is Task Execution?” on page 1-2

. “Task Overruns and Countermeasures” on page 2-2

. “Multicore Execution and Core Visualization” on page 2-11

2-16



Simulation Performance Plots

Simulation Performance Plots

FPGA

Algorithm

SoC Blockset enables post-simulation analysis of memory diagnostic data. These plots provide high-
level performance diagnostics of the memory system of the model. These plots are calculated
measurements from a simulation of your model. It considers the data type, sample time, and clock
frequency to calculate the bandwidth of your memory model and considers the number of bursts
executed per memory port.

To enable signal logging in simulation, select Hardware Implementation on the Configuration
Parameters dialog box. Under Hardware Board Settings > Target Hardware Resources > FPGA
design (debug), select the desired Memory channel diagnostic level.

This figure shows the datapath from one FPGA algorithm to another FPGA algorithm through a
memory channel.

Memory Controller

Controller

| 7% i interconnedt |

| |Protocol| | FIFO DA { ____________________________ | L DMA |1 FIFD | |Protocol FPGA
aTite— Controller__d{ ........................... I___d__pController Algorithm 2

|

o
1)
&

Memaory Channel

You can view channel latency plots for the datapath (represented by A, B, C, and D in the image) from
the Memory Channel block mask. You can view memory bandwidth, burst count, and control-latency
measurements (represented by 1, 2, 3, and 4 in the image) from the Memory Controller block mask.

The datapath from an FPGA algorithm to a processor is served through a DMA driver and a task
processor and is illustrated in this image.

2-17



2 Simulate SoC Applications

2-18

FPGA

Algorithm

Task Manager
I

o
=
=
=]
=
pis
h 4

Memory Controller

! /! DDR 5 T
B =
7 . x
2 /{3 Controller =
1 S
—F o done
| ' AX] Interconnect | E =
rocessor
[ | 'y
1 bdone | 4 bdone
T v v v
I D
breq l I breg
pma | ) | [
e Protocol| | FIFO Coﬂtmllel__.d__i __________ Buffers I__ N FIFO Protocol
B ‘ | C

Memory Channel

Memory Channel Latency Plots

Memory Channel latency information is available post simulation per channel. After simulating your
model, open the Memory Channel block mask. On the Performance tab, click Launch performance
plots. This action opens a new window with several control options to display these different
latencies:

* Buffer write complete - This option shows the time it takes between issuing a write request to
when the buffer is fully written. It is the path between A and B in the figure.

* Buffer read complete - This option shows the time it takes between issuing a read request to
when the buffer is read and is available again for writing. It is the path between C and D in the
figure. This option is only available if the reader is an FPGA algorithm (not a processor algorithm).
If the reader is a processor algorithm, this time shows as zero.

* Buffer task execution complete - This option shows the time it takes between issuing a read
request to when the buffer is read and is available again for writing. It is the path between C and
D in the figure. This option is only available if the reader is a processor algorithm (not an FPGA
algorithm). If the reader is an FPGA algorithm, this time shows as zero.

The Buffer task execution complete shows the time it takes for these events to occur:

The write buffer is full.

The channel issued an interrupt request (IRQ) to the processor.
An interrupt service routine (ISR) is executed.

A task is scheduled.

The task started executing.

The task read data.

The task optionally processed the data.

0 N o U A W N M

The task sends a done signal back to the channel.



Simulation Performance Plots

This following figure shows the latency path for a task execution to complete, as a red arrow from
CtoD.

[}
=
X
a
2
@

¥

Task Manager
Memory Controller |

i /! DDR | T

............................ &
g ’ E
2 /(33 Controller f =
ji: |_|=_| done [
| ! AX] Interconnect | e {
Processor
| [ 4 f
1 deone 4 bdone [
¥ ¥ oy
| D
breg l J breg
FPGA | |Protocall | FIFO | | P& | ,[ """""" e | \H FFo | |Protocal
Algorithm it R -]
B | | C

Memory Channel

* Averaging Window (s) - Specify a time, in seconds, for the averaging window width. The plot is
graphed as a moving average, using a time window with the width specified. You can also specify
min, max, or auto.

* min - Use this value to see data without any averaging. The total latency graph is aligned with
the Instantaneous Total Latency marks.
* max - Use this value to see the overall average for the entire simulation.
* auto - Use this value to see averaging over the number of buffers in your channel.
+ Instantaneous Total Latency - This shows discrete total latency measurements per buffer.
If you add Buffer write complete to Buffer read complete or Buffer task execution complete,

the plot displays the full latency from writer to reader. This image shows the total latency plot for the
“Streaming Data from Hardware to Software” on page 5-32 example.

2-19



2 Simulate SoC Applications

4 Performance Plots for soc_hwsw_stream_top/Memory Channel — O x

Buffer Latencies

Latency (ms)

1.6 1.8 2 2.2 2.4 2.6 2.8 o 3.2 3.4
Simulation Time (ms) w104

I I/ emory Channel Write Buffer Latency [ | Memary Channel Read Acknowledge Buffer Latency
®  Instantaneous Total Latency

Current Plot Information Plot Controls
Latencies: Buffer write, task execution complete. Latencies:

E Buffer write complete
|:| Buffer read complete
To update the plot, select the controls on the right and click "Create Plot [] Buffer task execution complete

Awveraging window (s). aute (0.08959 s).

Averaging window (s): |autu

Help Update

Note that the latencies are showing over an averaging window of one second. The instantaneous total
latency shows a peak in latency as 76.8267 ms. Use this information to verify the model against the
requirements.

Memory Controller Latency Plots
Memory Controller latency information is available post simulation. After simulating your model,

open the Memory Controller block mask. On the Performance tab, click Launch performance
plots. This action opens a new window with several control options to display performance metrics.

2-20




Simulation Performance Plots

This figure shows the datapath from one FPGA algorithm to another FPGA algorithm through a
memory channel.

Memory Controller

Controller

AXI Interconnect |

FPGA
Algorithm 2

Protocol| | FIFO DMA J DMA FIFO | |Protocal
___d__'l:ontroller —tread-»

aTite— Controller__d{ { ........................... !

FPGA
Algorithm

Memaory Channel

In the Latencies tab, select the master for which you want to graph latencies. Choose from any of
these options:

* Burst request to first transfer complete - This option shows the time it takes from the moment
the Memory Channel block issues a burst-write request to the first transfer of data. This latency
accounts for arbitration or interconnect delays. It is the path between 1 and 2 in the figure.

* Burst execution latency - This option shows the time it takes from the first transfer of data to
when a burst is written to memory. It is the path between 2 and 3 in the figure.

* Burst last transfer to complete latency - This option shows the time it takes from the moment
a burst completes to when the Memory Controller block issues a burst-done signal to the
Memory Channel block. It is the path between 3 and 4 in the figure.

* Averaging Window (s) - Specify a time, in seconds, for the averaging window width. The plot is
graphed as a moving average, using a time window with the width specified. You can also specify
min, max, or auto.

* min - Use this value to see data without any averaging. The total latency graph is aligned with
the Instantaneous Total Latency marks.
* max - Use this value to see the overall average for the entire simulation.
* auto - Use this value to see averaging over 1% of the bursts during the simulation.
+ Instantaneous Total Latency - This option shows discrete total latency measurements per burst.
Click Create Plot to see the latency, for the selected masters over the duration of the simulation

time. This image shows the total latency for Master 2 in the “Analyze Memory Bandwidth Using
Traffic Generators” on page 5-43 example.

2-21



2 Simulate SoC Applications

Performance Plots for soc_memeory_traffic_generator/Memory Controller [ R ]

bd

Latencies

)
i

3 Y i, 1

27 E

Pl
1000 -

800 F ' .
800 ]
700

600

500

Latency (ns}

400

300

200

100

0 500 1000 1500 2000 2500 3000 3500
Simulation Time (us)

I G urst Reqguest to First Transfer Latency I 5 urst Execution Latency
[ Burst Last Transfer to Burst Complete Latency @  Instantaneous Total Latency

Current Plot Information Latencies Plot Controls

Master to plot: Master 2, Bandwidth ', Bursts " Latencies\l
Latencies: Burst request to first transfer complete, Master to plot:
execution, last transfer to complete.

Master 2 =
Averaging window (s): auto (2.431e-05 s). Latencies: _

Burst request to first transfer complete
To update the plot, selact the controls on the right Burst execution
and click 'Create Plot", Burst last transfer ta complete

Averaging window (s): |auto
Hel

Note Memory controller latency plots are not available when the master is a processor.

2-22



Simulation Performance Plots

You can then zoom in to analyze the peak instantaneous latency:
Performance Plots for soc_memory_traffic_generator/Memory Controller [T TR
Latencies

A/ EME Q0

500 !

800

=]

(e |

e ]
T

(s}

[ |

(]
T

Latency {(ns}

0
240 260 280 300 320 340 360 380 400 420
Simulation Time (us)

I c st Request to First Transfer Latency I Eurst Execution Latency
[1Burst Last Transfer to Burst Complete Latency #  Instantaneous Total Latency

Current Plot Information Latencies Plot Controls

Master to plot: Master 2. Bandwidth | Bursts " Latencies‘\
Latencies: Burst request to first transfer complete, Master to plot:
execution, last transfer to complete.

Master 2
Averaging window (s): auto (2.431e-05 s). Latencies: :

Burst request to first transfer complete
To update the plot, select the controls on the right Burst execution
and click 'Create Plot!, Burst last transfer to complete

Averaging window (s): |auto
Hel Update

Memory Bandwidth Plots

In the Bandwidth tab, select the masters for which you want to graph bandwidth. Click Create Plot
to see the bandwidth, in megabytes per second, for the selected masters over the duration of the
simulation time. This image shows the bandwidth for the “Analyze Memory Bandwidth Using Traffic
Generators” on page 5-43 example.

2-23



2 Simulate SoC Applications

4\ Performance Plots for soc_memeory_traffic generator/Memory Controller | = B EE

Bandwidth

1000

800

800

700

600

500

MB/s

400

300

200

100

0 500 1000 1500 2000 2500 3000 3500
Simulation time (us)

|-Master1 I aster 2 [ Master 3 |:|Master4|

Current Plot Information Bandwidth Plot Controls
Masters to plot: 1,2,3.4. Bandwidth‘l,Bursts\Latencies\l

Sampling interval (s): auto (2.431e-05 s). Masters to plot:

Master 1
To update the plot, select the controls on the right Master 2
and click 'Create Plot', Master 3

Master 4

sampling interval (s): |auto

Hel

Note Bandwidth information is not displayed when a master is a processor.

Memory Burst Plots

In the Bursts tab, select the masters for which you want to graph bursts. Click Create Plot to see
the number of bursts executed for the selected master over the duration of the simulation time. This
image shows the burst count for the “Analyze Memory Bandwidth Using Traffic Generators” on page
5-43 example.

2-24



Simulation Performance Plots

4 Performance Plots for soc_memory_traffic_generator/Memory Controller [ & = B

Bursts

Bursts Executed

0 500 1000 1500 2000 2500 3000 3500
Simulation time (us)

|-Master1 I vaster 2 [ Master 3 |:|Master4|

Current Plot Information Bursts Plot Controls
Mesters to plot: 1.2.3.4. Bandwidth ' BurstS",Latencies".l

sampling interval (s): auto (2.431e-05 s). Masters to plot:
Master 1
To update the plot, select the controls on the right

St , Master 2
and click 'Create Plot', Master 3

Master 4

Sampling interval (s): |auto

Hel

Note Bandwidth information is not displayed when a master is a processor.

See Also
Memory Controller | Memory Channel

More About

. “Memory Performance Information from FPGA Execution” on page 4-8

2-25



2 Simulate SoC Applications

Simulation Diagnostics

2-26

SoC Blockset enables simulation and evaluation of memory transactions in Simulink without the need
to deploy a model to an SoC device. Use this diagnostic information to analyze the performance of
your models, and adjust as needed to meet the desired system performance requirements. The
simulation generates two types of visualization of the memory traffic:

» “Simulation Performance Plots” on page 2-17 - Provides high level performance diagnostics of the
model's memory system. Memory bandwidth, burst counts, and transaction latencies are
calculated from a simulation of your model. You can view this information for each memory master
in your model, or an overall view from the memory controller.

+ “Buffer and Burst Waveforms” on page 2-26 - Provides burst transaction debug information from
simulation, including the use of buffer regions.

You can also capture actual bandwidth, number of bursts, and latency measurements from the design
running on the FPGA, and view information about individual burst transactions. This information is
captured by including an AXI interconnect monitor IP in the FPGA design, and querying the data over
a JTAG AXI master connection from the host. See “Memory Performance Information from FPGA
Execution” on page 4-8.

Buffer and Burst Waveforms

SoC Blockset enables logging simulation signals, and visualizing the logged signals using the Logic
Analyzer. To enable signal logging, Set Memory diagnostics level to Basic diagnostic

signals in the configuration parameters of the model, under Hardware Implementation > Target
hardware resources > FPGA design (debug).

After simulating your model, locate the Logic Analyzer at the top of your Simulink window.

=) Q‘EJ ») 1|53 Lt = 1e-3 Mormal
wi Simulation Data Inspector

Logic Analyzer

The Logic Analyzer tool provides visualization of signal waveforms to show timing of various events
of the memory model.

The Logic Analyzer displays signals from the Memory Controller and from the Memory Channel
blocks.

*  Burst Waveforms

Waveforms from the memory controller include information for bursts from the masters in the
system. The waveforms are color coded to differentiate the different masters. These waveforms
give insight into the sequencing of each of the masters through the shared memory. For each
master, view the following signals:

* BURST EXECUTION EVENT: State of the current burst request. Valid states are: none (idle),
request, executing, done. For more information about the memory controller state, see
Memory Controller.

* ReqlID: Identifier of the current burst request. An incrementing number that is unique
throughout simulation.



Simulation Diagnostics

* burstTransfersCompleted: A running count of transferred bursts. If no bursts are dropped
within the memory channel, the count of transferred bursts matches ReqID. If bursts are
dropped, ReqID becomes larger than this count.

* BytesTransferred: A running count of transferred bytes.

The following figure shows the signals after simulating “Analyze Memory Bandwidth Using Traffic
Generators” on page 5-43.

LOGIC ANALYZER TRIGGER & & @
Add  Previous  Next [if Delete &j & . soeppmg Run Step Stop  Find | Setiings

Divider Group Cursor  Transition Transition Forward
El Ci & PAN SIMULATE FIND | GLOBAL ry

BurstComplete
gl

4873

2404078

12784000 n: 12765000 n: 12766000 n:

Cursor
Cursor 2 12762687 ns 12762687 ns

The waveforms include burst information for the four masters, displayed in different colors. This
information correlates to the “Memory Controller Latency Plots” on page 2-20.

¢ Buffer Waveforms

Waveforms from the memory channel include information for buffer read and write transactions in
the channel. Each memory region is divided into several buffers specified by the Number of
buffers parameter of the Memory Channel block. The writer fills the buffers, and the reader
empties them. These waveforms give insight into the sequencing of the writer and reader for a
given region. The buffer waveforms include the following signals:

* REGION BUFFER_EVENT: State of the current buffer request. Valid states are: none (idle),
request, executing, done. For more information about the state of the memory channel, see
Memory Channel.

* BufReqID: Identifier of the current buffer request. An incrementing number that is unique
throughout simulation.

* BufferAddress: Starting address offset of the current buffer. The buffer address repeats as
the simulation cycles through the buffers, reflecting the address boundaries of the buffers.

* BufGntCurrentBuf: The currently active buffer specified from 1 to the number of buffers in
the channel. BufGntCurrentBuf points to the buffer being written to (on the writer side), or
the buffer being read from (on the reader side).

* BufRelCurrentBuf: The buffer currently released by the reader or writer specified from 1 to
the number of buffers in the channel. On the reader side, when a buffer is released it is
available to the writer for writing. On the writer side, when a buffer is released it is available
to the reader for reading.

+ BufAvail: The number of buffers currently available to the reader for reading. This value is
identical on the reader and the writer side.

2-27



2 Simulate SoC Applications

* BufTransfersCompleted: A running count of transferred buffers. If no buffers are dropped
within the memory region, the count of transferred buffers matches BufReqID. If buffers are
dropped, BufReqID is larger than this count.

e 1cFIFOEntries: Number of bursts written to the interconnect FIFO.

* icFIFODroppedCount: Number of bursts dropped from the interconnect FIFO.

» The following figure shows the buffer signals after simulating “Histogram Equalization Using
Video Frame Buffer” on page 5-21.

LOGIC ANALYZER TRIGGER WAVES
ANEN [ & 2 g @ang ¢ ® F
Add  Add (i Add  Previous  Next [ Delete | () & [+ ing Run St
i ot Toin v RSN MOd

EDIT CURSORZ ZOOM & PAN SIMULATE

Frame Buffer/log/Writer/<REGION_BUFFER_EVENT>
Frame Buffer/log/Mriter/<bufReqlD>

Frame Buffer/log/Writer/<bufGntCurrentBuf-

Frame Buffer/log/MWriter/<bufRelCumentBuf>

Frame Buffer/log/MWriter/<bufAvail=

Frame Buffer/log/Writer/<bufTransfe pleted>
Frame Buffer/log/W

Frame Buffer/log/Writer/<icl

2 16675.35 us

You can relate the memory model operation with the protocol interface to understand the
performance of your model. The following figure shows how to relate the memory model operation

with the protocol interface.

2-28



Simulation Diagnostics

1. Backpressure

2. Reader cannot
finish buffer 2.

3. Writer's FIFO
begins filling
up.

4. Writer is
blocked and
must assert
back-pressure
upstream.

5. Reader gets to
finish buffer.
Everyone starts
moving again.

See Also
Logic Analyzer | Memory Controller | Memory Channel

More About

. “Simulation Performance Plots” on page 2-17

2-29



2 Simulate SoC Applications

External Memory Channel Protocols

2-30

The signal interfaces added to the channel model for the writer and reader are protocols that the
algorithms use to communicate with the channel. Protocols do not change the core of the external
memory channel model, which operates on burst transactions. They control only how the data gets in
or out of those channels.

For FPGA or ASIC IPs, typical protocols include streaming data, streaming video data, and
addressable data transfers. For software, typical protocols presented to an algorithm include simple
data buffer, with details about interrupts, buffer management, and task scheduling left to the
underlying OS.

Configure the Memory Channel block to support various protocols.

AXI4 Stream to Software via DMA

The AXI4-Stream Software configuration provides a software streaming protocol. Choose this
configuration when a processor acts as a reader/writer to the memory. This protocol includes a
trigger configuration, which the Task Manager block receives and reads. The trigger signals that the
memory buffer is ready for writing or reading. For more information about AXI4-stream protocol, see
“AX14-Stream Interface” on page 1-23.

AXl4 Stream FIFO

The AXI4-Stream configuration provides a simple data valid and ready protocol for data streaming.
You can generate a fully compliant AXI4-Stream interface from this protocol using HDL Coder.

For data stream channels, memory addressing is automatic. The channel is responsible for converting
the stream to buffer addresses as a DMA core would. The relationship of the stream to the managed
buffers in the external memory is through an ‘end of buffer’ signal, known as tlast for AXI4-Stream.
For more information about AXI4-stream protocol, see “AXI4-Stream Interface” on page 1-23.

AXI4 Stream Video FIFO

The AXI4-Stream Video FIFO configuration provides a data valid and ready protocol similar to the
AXI4 Stream FIFO. This protocol also has additional signaling to mark the start or the end of a video
line and start or end of a video frame. This protocol is compatible with the HDMI Rx and HDMI Tx
blocks, available with the SoC Blockset Support Package for Xilinx Devices. You can generate a fully
compliant AXI-Stream video streaming interface from this protocol using HDL Coder. For information
about the HDMI blocks, see documentation for SoC Blockset support packages.

For streaming video data channels, memory addressing is automatic. The channel is responsible for
converting the stream to buffer addresses as a DMA core would. The stream relates to the managed
buffers in the external memory through the pixel control bus signals, which demarcate lines and
frames. For more information, see “AXI4-Stream Video Interface” on page 1-28.

AXlI4 Stream Video Frame Buffer

The AXI4-Stream Video Frame Buffer configuration provides The same signaling as the AXI4 Stream
Video FIFO, with additional control signals for frame-buffer synchronization. This protocol is
compatible with the HDMI Rx and HDMI Tx blocks, available with the SoC Blockset Support Package



External Memory Channel Protocols

for Xilinx Devices. You can generate a fully compliant AXI-Stream video streaming interface from this
protocol using HDL Coder. For information about the HDMI blocks, see documentation for SoC
Blockset support packages.

For streaming video data channels, memory addressing is automatic. The channel is responsible for
converting the stream to buffer addresses as a DMA core would. The stream’s relationship to the
managed buffers in the external memory is through the pixel control bus signals, which demarcate
lines and frames.

AXI14 Random Access

The AXI4 configuration provides a simple, direct interface to the memory interconnect. Unlike the
previous two streaming protocols, this protocol allows the algorithm to act as a memory master by
providing the addresses and managing the burst transfer directly. This protocol represents a
simplified master protocol. You can generate a fully compliant AXI-4 interface from this protocol
using HDL Coder. For more information about the simplified AXI4 interface, see “Simplified AX14
Master Interface” on page 1-25.

See Also
Memory Channel

More About

. “Simplified AXI4 Master Interface” on page 1-25
. “AX14-Stream Interface” on page 1-23
. “AX14-Stream Video Interface” on page 1-28

2-31



2 Simulate SoC Applications

Record Data from Hardware 1/O Devices

2-32

Models using recorded data in simulation can reproduce the behavior of the application when
implemented onto a physical hardware or device. SoC Blockset provides a set of functions that can
connect and record I/O device data directly from a hardware board. The recorded data file can then
be used in an SoC Blockset model simulation.

Process to Record Data

To record I/O data from a hardware board, you can follow the general sequence of steps below.

1

7

Configure Hardware - Connect and configure your hardware board. You may need to install the
hardware support package for your hardware board.

Create Data Recorder - A data recorder object manages the I/0O hardware peripherals and stores
the data during the data collection process.

Choose I/O Devices - Choose from the available I/O devices on the hardware board and add them
to the data recorder object.

Setup Recorder - Prepare the hardware board for the data recording process. This setup includes
any initialization and configuration of the hardware I/O devices to be recorded.

Start Recording - Start the data recorder on the hardware. The data recorder executes and
collects data from the hardware I/O devices for the specified period.

Execute Hardware Operations - Run hardware operations on the hardware board that exercise
the peripherals being recorded. Operations can include sending signals to an analog-to-digital
converter or reading data received on a UDP channel.

Save Data - Save the data stored in the data recorder to a file on your development computer.

The resulting data file can now be used in the simulation of the hardware blocks.



Use Memory and /O Device Data in Processor Simulation

Use Memory and I/O Device Data in Processor Simulation

The Processor I/0 sub-library in SoC Blockset contains blocks that simulate the data transfer
between the processor system and memory or I/O devices in the SoC application. Processor I/0
blocks, including the Register Read, Register Write, and Stream Read, can read and write data to
memory, such as DDR or hardware registers, on the SoC. Similarly, the TCP Read, TCP Write, UDP
Read, and UDP Write blocks can read and write data to external I/O devices.

In simulation, an 10 Data Source block sends data messages to the Processor 1/0 block. Together,
this mechanism allows tasks to simulate using either previously recorded or generated I/O data with
timing accurate execution.

The IO Data Source block and a Processor I/O block can be configured to simulate in one of three
modes:

* Replay recorded data from file
* From input port
» Zeros

Event-Driven Task

For event-driven task, the recorded data The IO Data Source also sends event messages to the Task
Manager block to start the task containing the Processor I/0 block.

Timer-Driven Task

See Also
10 Data Source | Stream Read | TCP Read | Task Manager | UDP Read

2-33



2 Simulate SoC Applications

Using the Algorithm Analyzer Report

Executing the socModelAnalyzer function on a Simulink model or the socFunctionAnalyzer
function on a MATLAB function results in a report that details the resources used by the model or
function, respectively.

The report includes information for each mathematical or logical operator in the top model or
function, with individual lines for each operator and data type. For example, multiplication with data
type double and multiplication with data type uint32 are listed separately. The report lists each
instance of the operator as a separate line. The report includes these fields.

* Path - The path to the operator within the structural hierarchy of the top model or function

* Count - The number of times the operator is executed in the design

* Operator - The operator used

* DataType - The data type used for the output of the operator

* Link - Alink to the location of the operator in the model or function

Open Report

Use one of these options to access the report.

* Execute the socModelAnalyzer function, and then click the Open report viewer link.
* Execute the socFunctionAnalyzer function, and the click the Open report viewer link.

* Execute the socAlgorithmAnalyzerReport function, specifying a MAT-file generated by the
socModelAnalyzer or socFunctionAnalyzer function.

Operator View

View the generated report in the operator view. On the report toolstrip, click Operator View. Then,
when clicking Collapse All each line represents the number of operator executions per data type. A
line in the collapsed-view of the report represents one or more operators, with the same data-type.
Expand a line to see the individual operators contributing to the count, their path in the model
hierarchy, and a link to their location in the model.

REFORT

Algorithm View Expand All  Collapse All

VISUALIZATION
Operator Data type Count File name Path Link to source
v ADD(+) double 50
* ADD(+) double 50 soc_test_func.m
~ ADD(+) double 40 soc_test func.m soc_test func
ADD(+) double 20 soc_test func.m soc_test func soc_test_func.m:86-90
ADD(+) double 20 soc_test func.m soc_test func soc_test_func.m:104-111
~ ADD(+) double 10 soc_test func.m myloop
ADD(+) double 10 soc_test_func.m myloop soc_test_func.m:242-246
» CALL{myloop) uint32 1
b MUL(Y) uint32 50

2-34



Using the Algorithm Analyzer Report

Algorithm View

View the generated report in the operator view. On the report toolstrip, click Algorithm View. Then,
when clicking Collapse All each line represents a top node in the hierarchy. You can expand a line to
navigate to the function or model that you are analyzing. Use this view when you are interested in
analyzing the operators in a specific model or function. When using this view, you can collapse the
view for other models or functions.

REFORT

Operator View Expand All Collapse All
VISUALIZATION
File name Path Count Operator Data type Link to source
« soc_fest_func.m 101
» soc_fest_func.m myloop 20
« soc_fest_func.m soc_test func 81
» soc_fest_func.m soc_test func 40 ADD(+) double
« soc_test_func.m soc_test func 40 MUL(®) uint32
soc_fest_func.m soc_test func 20 MUL(®) uint32 soc_test_func.m:104-107
soc_fest_func.m soc_test func 20 MUL(®) uint32 soc_test_func.m:103-116
» soc_fest_func.m soc_test func 1 CALL(myloop) uint32
See Also

socAlgorithmAnalyzerReport | socFunctionAnalyzer | socModelAnalyzer

2-35






Generate Code and Deploy on SoC
Device

* “Supported Third-Party Tools and Hardware” on page 3-2

* “Code Generation of Software Tasks” on page 3-4

* “SoC Generation Workflows” on page 3-5

+ “Export Custom Reference Design from SoC Model” on page 3-6
“Generate SoC Design” on page 3-11



3 Generate Code and Deploy on SoC Device

Supported Third-Party Tools and Hardware

Third-Party Synthesis Tools and Version Support

SoC Blockset supports these third-party FPGA synthesis tools:

¢ Intel® Quartus® Prime Standard Edition 18.1
* Xilinx Vivado® Design Suite 2019.1

To use third-party synthesis tools with SoC Blockset, a supported synthesis tool must be installed, and
the synthesis tool executable must be on the system path.

Third-Party Support for Software Generation

SoC Blockset supports this third-party software generation tool:

* Intel SoC FPGA Embedded Development Suite (EDS) 18.0

Supported Xilinx Devices

SoC Blockset supports execution on Xilinx devices shown in this table.

Device Family Board Comments
Xilinx Artix®-7 Artix-7 35T Arty FPGA Development Board
Xilinx Kintex®-7 Kintex-7 KC705
XilinxZynq Zyng-7000 ZC706
ZedBoard™

XilinxZynqUltraScale+™  |Zynq UltraScale+ MPSoC ZCU102 Evaluation Kit

Zynq UltraScale+ RFSoC ZCU111 Evaluation Kit FTDI JTAG not
supported on
Linux®

Supported Intel Devices

SoC Blockset supports execution on Intel devices shown in this table.

Device Family Board
Intel Arria® 10 Arria 10 SoC Development Kit
Intel Cyclone® V Cyclone V SoC Development Kit

SoC Board Support Packages
The SoC Blockset support packages contain the definition files for all supported boards. You can

download one or more vendor-specific support packages. To generate executables and execute on
hardware, download at least one of these packages.

3-2



Supported Third-Party Tools and Hardware

To see the list of SoC Blockset support packages, visit “SoC Blockset Supported Hardware”. To
download an SoC Blockset support package, on the MATLAB Home tab, in the Environment section,
click Add-Ons > Get Hardware Support Packages.

See Also
“Hardware Implementation Pane Overview” | SoC Builder

More About
. “Generate SoC Design” on page 3-11
. “SoC Blockset Supported Hardware”

3-3



3 Generate Code and Deploy on SoC Device

Code Generation of Software Tasks

3-4

A Simulink model containing a Task Manager block simulates task execution. When a model gets
deployed to an SoC hardware board, the SoC Blockset automatically creates and assigns the tasks to
threads, links interrupts, messages, and system events to the generated code of the model.

Timer-Driven Tasks

An SoC Blockset model, when implemented onto hardware as generated and compiled code, uses an
operating system (OS) timer to drive the base-rate time step of the model. All time based signals
derive their time steps, known as sub-rates, from the base-rate time step of the model. A timer-driven
task, created from the Task Manager block, uses a counter that increments at each base-rate timer
step. When the counter reaches an integer multiple of the base-rate, the generated code posts to the
semaphore associated with that task. Posting to the semaphore unblocks the thread and executes the
task.

Event-Driven Task

Each event-driven task created from the Task Manager block gets a unique semaphore. A unique
event elsewhere in the system posts to that semaphore and puts the task thread into the running
state. OS kernel handles the management of the task thread until it returns to the waiting state.

See Also
SoC Builder | Task Manager

More About
. “Event-Driven Tasks” on page 1-4
. “Timer-Driven Task” on page 1-8



SoC Generation Workflows

SoC Generation Workflows

You can deploy an SoC model on an SoC device by using one of these workflows.

* Use the SoC Builder tool to guide you through the steps required to build hardware and software
executables, load them on an SoC device, and execute.

* Use the socExportReferenceDesign function to export a reference design from an SoC model,
and then integrate your IP code to the reference design and deploy to an SoC device using the
HDL Workflow Advisor tool.

Both workflows require the SoC Blockset and HDL Coder products.

Use SoC Builder tool to deploy SoC model on SoC device

If you are authoring an SoC model from scratch using SoC Blockset features, first simulate and refine
the model as needed. Then, use the SoC Builder tool to guide you through the workflow of checking,
building, loading, and executing your design on an SoC device. For an example of using the SoC
Builder tool, see “Streaming Data from Hardware to Software” on page 5-32.

Use exportReferenceDesign function to deploy SoC model on SoC
device

If you are authoring an IP core using the HDL Coder custom IP core generation workflow, you can
create a custom reference design and integrate the IP core into that design. Use the
socExportReferenceDesign function to export a reference design from an SoC Blockset model.
For an example of using the socExportReferenceDesign function, see “Export Custom Reference
Design” on page 5-92.

See Also
SoC Builder | socExportReferenceDesign

More About

. “Generate SoC Design” on page 3-11

. “Custom Reference Design” (HDL Coder)

. “Custom IP Core Generation” (HDL Coder)



3 Generate Code and Deploy on SoC Device

Export Custom Reference Design from SoC Model

3-6

You can use the socExportReferenceDesign function to generate a reference design from an SoC
Blockset model and avoid the manual steps required to generate and register a custom reference
design. The function generates these artifacts.

* Board registration files

* Reference design registration file

* [P repository

* Design files

* Constraint files

SoC models can be one of these types.

* An SoC Model with an FPGA, memory, and optional I/O (no processor)
* An SoC Model with a processor, FPGA, memory, and optional I/O

Create SoC Model of System

When exporting a custom reference design from an SoC model, the reference design does not include
the design under test (DUT) and the interface to the DUT is exposed. After generating the reference
design, you can integrate your custom IP by using the HDL Workflow Advisor tool. Your custom IP
must have the same interface as the FPGA Algorithm block.

To export a custom reference design, first create an SoC model to model the system and the I/O
available on your board. To create an SoC Blockset model, use one of these methods.

* Create a model by using an SoC Blockset template (recommended). For more information, see
“Use Template to Create SoC Model” on page 1-31.

* Build an SoC model from scratch. For more information, see “Create an SoC Project Application”
on page 1-49.

Include a DUT subsystem in the model. This subsystem must have the same interface as the IP core
that you are developing. Because the generated reference design does not include the DUT
subsystem, the DUT can be a simple model or just a pass-through block.

Prepare SoC Model for Reference Design Export

You can use the MATLAB as AXI master feature in the exported reference design to interact with the
SoC device from the host. In Simulink, open the Configuration Parameters dialog box by clicking
Model Settings on the Modeling tab, and on the left pane, select Hardware Implementation.
Then, expand Target hardware resources, select FPGA design (top-level), and then select
Include 'MATLAB AXI Master' IP for host-based interaction.

In the IP core clock frequency (MHz) box, specify the IP core clock frequency in MHz.
To ensure that your SoC model supports code generation, use the SoC Builder tool to generate

executables and deploy your model. For more information about the SoC Builder tool, see “Generate
SoC Design” on page 3-11.



Export Custom Reference Design from SoC Model

For an example showing this workflow on an FPGA-only case, see “Export Custom Reference Design”
on page 5-92.

Additional Preparation When SoC Model Includes Processor

If your model contains both FPGA and processor subsystems, these additional steps are required
before exporting the reference design.

1 In the configuration parameters , click Hardware Implementation on the left. Then, expand
Target hardware resources, and select Include processing system in FPGA design (top-
level).

2  Run the SoC Builder tool and follow the guided steps for code generation. This step is required
because SoC Builder automatically generates a device tree file (. dtb) on the SD card named
hdlcoder rd/soc prj.output.dtb and a software model with matching device names.

3  Copy the device tree file from the folder hdlcoder rd to the root folder of the SD card. In the
generated plugin_rd.m file, the custom device tree file is specified as:

hRD.DeviceTreeName = 'soc _prj.output.dtb';

Execute socExportReferenceDesign Function

Export the custom reference design for your model by using the socExportReferenceDesign
function. For example, for a model named soc_image rotation, enter this code at the MATLAB
command prompt.

socExportReferenceDesign('soc_image rotation')
The function generates these artifacts in the current folder.

* Board registration files

* Reference design registration file
* [P repository

* Design files

* Constraint files

Integrate IP Core into Generated Reference Design

Add the generated folder to the MATLAB path. Use the HDL Workflow Advisor tool to guide you
through the steps for integrating your IP and generating hardware and software executables for
deployment on an SoC device.

For an example showing the full workflow on an FPGA-only case, see “Export Custom Reference
Design” on page 5-92. If your model includes a processing system, these additional steps are
required when using the HDL Workflow Advisor tool.

1 In Simulink, right-click the DUT block that you want to integrate into the reference design, and
select HDL Code > HDL Workflow Advisor to open the HDL Workflow Advisor tool.
Alternatively, use the hdladvisor function.

2 Instep 1.1, set Target workflow to IP Core Generation and Target platform to the
platform generated by the socExportReferenceDesign function.



3 Generate Code and Deploy on SoC Device

3-8

Click Run This Task to run the Set Target Device and Synthesis Tool task.

In step 1.3, set the target interface by connecting each port in your IP to the corresponding port
in the reference design.

Click Run This Task to run the Set Target Interface task.
Continue with the remaining steps of the HDL Workflow Advisor tool.

Optional: In step 4.2, you can choose to generate a software interface model with IP core driver

blocks (requires an Embedded Coder® license). If you choose to generate this software interface
model, clear Skip this task under Generate a software interface model with IP core driver
blocks for C code generation.

For more information, see the section titled "Generate a software interface model" in “Getting
Started with Targeting Xilinx Zynq Platform” (HDL Coder).

The generated software interface model contains AXI driver blocks that match the interface of
the DUT subsystem. The device name is set to ' /dev/mwipcore' by default. Change the device
name in these AXI driver blocks to match the in the device tree file used by the SD card image.

There are several ways to find the device name:

* The device name is derived from the DUT name of the SoC model. If you export a reference
design using an SoC model with the DUT name specified as 'soc_hwsw_stream fpga/FPGA
Algorithm Wrapper', the generated device name in the AXI driver blocks is ' /dev/
mwfpga algorithm wrapper ip0@"'.

* Find the device name in your operating system (OS) image after booting the SoC device. To do
that, login to the board using UART or SSH protocols, and execute:

1ls/dev

For example:



Export Custom Reference Design from SoC Model

10

In step 4.4, set Programming method to Download.

When the HDL Workflow Advisor tool is done building, it returns a generated bitstream file.
Program the FPGA with the generated bitstream file.

You can now deploy the software interface model in standalone mode, or use it in external mode
to interact with the SoC device. For an example, see the section titled "Run the software
interface model on Zynq ZC702 hardware" in “Getting Started with Targeting Xilinx Zyng
Platform” (HDL Coder).

3-9



3 Generate Code and Deploy on SoC Device

See Also
socExportReferenceDesign

More About

. “SoC Generation Workflows” on page 3-5

. “Custom Reference Design” (HDL Coder)

. “Export Custom Reference Design” on page 5-92

. “Getting Started with the HDL Workflow Advisor” (HDL Coder)

3-10



Generate SoC Design

Generate SoC Design

In this section...

“Step 1: Set Up FPGA Design Software Tools” on page 3-11
“Step 2: Start SoC Builder” on page 3-11

“Step 3: Prepare Model for Generation” on page 3-12

“Step 4: Select Project Folder” on page 3-13
“Step 5: Select Build Action” on page 3-13
“Step 6: Validate Model” on page 3-13
“Step 7: Build Model” on page 3-14

“Step 8: Connect Hardware” on page 3-14

“Step 9: Load and Run” on page 3-14

This tutorial outlines the steps to build hardware and software executables for your model and
execute your application. Your SoC model can contain a processor model, an FPGA model, or both.

SoC Builder requires that you have a support package installed, based on the board selected in the
configuration parameters. For more information, see “SoC Blockset Supported Hardware”.

Step 1: Set Up FPGA Design Software Tools

To generate SoC binaries, you must include the path to Vivado or Quartus executables in your system
path. If the executables are not already in your system path, use hdlsetuptoolpath function to add
them to your path.

Xilinx Software

Use the hdlsetuptoolpath function to set up your system environment for accessing Xilinx tools
from MATLAB. This function adds the specified installation folder to the MATLAB search path. The
following example assumes that Xilinx Vivado is installed at C:\Xilinx\Vivado\2018.3\bin.

hdlsetuptoolpath('ToolName', 'Xilinx Vivado',
'"ToolPath', 'C:\Xilinx\Vivado\2018.3\bin\vivado.bat"')

Intel Software
Use the hdlsetuptoolpath function to set up your system environment for accessing Intel tools
from MATLAB. This function adds the specified installation folder to the MATLAB search path. The

following example assumes that Intel FPGA design software is installed at C:\Intel\18.1\quartus
\bin64.

hdlsetuptoolpath('ToolName', 'Altera Quartus II', ...
'ToolPath', 'C:\Intel\18.1\quartus\bin64")

Step 2: Start SoC Builder

In the Simulink toolstrip, on the System on Chip tab click Configure, Build & Deploy.

3-11



3 Generate Code and Deploy on SoC Device

Step 3: Prepare Model for Generation

Prepare your model by selecting a starting point for the build process, and then review the model
information.

Note If no support package is detected, SoC Builder first prompts you to install the required
support package.

4. SoC Builder — X
Prepare = Validate = Build = Run

Setup

About Your Selection

_ The table on the left shows which
@ ELI”Ij rT'IEIIjEE components of your model the tool
’ generates.

Select a starting point for the build process:

() Load existing binaries

If the table shows no processor or
FPGA model components, the tool
does not generate code for the
comesponding model.

Review the following information before building or loading. N _

Additional Information

For information on creating

Top Model soc_hwsw_stream_top processor or FPGA models, refer to
Use Templates to Create SoC
FPGA Model soc_hwsw_stream_fpga Model.
Processor Model[soc_hwsw_stream_proc
Cancel Mext =

Specify the starting point for the build process. If you are building a model that you have not built
before, select Build model. If you previously completed the build process and saved the binaries in a
folder, select Load existing binaries.

SoC Builder parses the model and displays the top model, the FPGA model (if one exists), and the
ARM model (if one exists). Review this information for accuracy. If it seems incorrect, revise the
model, save, and restart the SoC Builder tool.

3-12



Generate SoC Design

Note If your FPGA model is set to a frame-based Simulink model variant, then the SoC Builder does
not display the model in the table. To make it visible in the table, set the model variant to sample-
based and recompile your design.

Click Next.

The next page of the SoC Builder provides information about the memory map of the model. To open
the Memory Mapper, click View/Edit. Review the base addresses and offsets, and edit them if
needed.

Note This memory map step of the SoC Builder is visible only if you have an FPGA model in your
top model. If your FPGA model is set to frame-based modeling - then no FPGA model is visible, and
therefore there is no access to the Memory Mapper tool.

Click Next.

Step 4: Select Project Folder

Specify a path to a project folder by entering the path in the Project Folder text box or by browsing
to a folder location. The SoC Builder places all generated files, including reports, executables, and
the bitstream, in this specified folder.

If you selected Load existing binaries as the starting point for the build process, specify the project
folder location of the previous binaries and reports.

Click Next.

Step 5: Select Build Action

In the Select Build Action section, select one of these options:

* Build, load and run - Select this option to generate HDL and C code, build software executables
and an FPGA programming file from your model. After building, SoC Builder loads the generated
code to the FPGA board and executes the application.

* Build only - Select this option to generate HDL and C code, build software executables and an
FPGA programming file from your model. SoC Builder saves the generated binaries in a folder,
and you can continue execution later.

* Build and load for external mode - Select this option to build the design and run it in external
mode. External mode enables you to tune parameters on the FPGA without having to rebuild the
FPGA design. It also enables logging data from the FPGA and displaying it on the host. For more
information about external mode, see “External Mode Simulations for Parameter Tuning and
Signal Monitoring” (Simulink Coder).

Step 6: Validate Model

Check the model against the selected board and generate a report. Check the report to ensure that
the design is generated as expected.

SoC Builder names the report <project-folder>/html/modelname system report.html and
saves it in the project folder. The report contains an overview section with information about the

3-13



3 Generate Code and Deploy on SoC Device

3-14

model, project folder, and generated files. The report also lists user IP cores and vendor-provided IP
cores, with the address map of registers and memory blocks.

Step 7: Build Model

To generate a bitstream for your FPGA design and a compiled executable for your software, click
Build.

Clicking Build opens an external shell and runs third-party tools for synthesis and implementation of
the design. The generation time depends on the complexity of your model and your host computer.
Once the generation is complete, the bitstream is generated with your model name. SoC Builder
generates a JTAG testbench script if you selected the Include MATLAB as AXI Master option in the
configuration parameters. The script shows how to set up MATLAB as an AXI Master and configure
your FPGA design over JTAG. You can customize the script to create your own test bench. For more
information about MATLAB as an AXI Master, see support package documentation: “SoC Blockset
Supported Hardware”.

Step 8: Connect Hardware

Review the IPv4 address, SSH Port number, and login credentials. Edit any of these values if
necessary. This step is critical if you have more than one board connected to the host computer, so
that SoC Builder can identify the correct port connection. Verify that the displayed IP address
matches the IP address for the board you intend to use.

Verify that the board is connected to the host with an Ethernet cable, and then click Test
Connection to test the physical connection to the board.

Note This step in the SoC Builder is visible only if your top model includes a processor model.

Step 9: Load and Run

Note If your top model includes an FPGA model, but no processor model, the button shows as Load.

Verify that your board is connected to the host computer.

» If a processor model is present in your top model, connect to the board with an Ethernet cable.

» If the top model includes an FPGA model, but no processor model, connect to the board with a
JTAG cable.

Click Load and Run. This action loads the generated bitstream to the FPGA, programs the processor,
and runs the application.

If you selected Tune parameters and monitor signals in external mode in step 5, this action
loads the bitstream to the FPGA and opens the model in external mode. You can now choose signals
for logging and monitoring or change tunable parameters. In the System on Chip tab, in the Run on
Hardware section, you can click Monitor and Tune to run the instrumented application on
hardware. Click Connect if you previously built and loaded your design to an FPGA. This action
connects your instrumented Simulink model to the FPGA model.



Generate SoC Design

See Also
SoC Builder

3-15






Analyze Performance on SoC Device

* “Code Instrumentation Profiler” on page 4-2
* “Kernel Instrumentation Profiler” on page 4-4
* “Profile Task Execution on Processor” on page 4-6
“Memory Performance Information from FPGA Execution” on page 4-8



4 Analyze Performance on SoC Device

Code Instrumentation Profiler

4-2

In a code instrumentation profiler, code gets added into the generated code to record the start and
stop times of each task executing on the processor. The recorded start and stop times of each task are
sent to the development computer to be saved, processed, and displayed. The instantaneous state of
each task gets inferred from the combined start and stop times and priorities of all the tasks within
the process.

Consider a simple model with two tasks, one high- and low-priority executing on an embedded
processor and measured by a code instrumentation profiler. This diagram shows the measurements
made by the code instrumentation profiler and the inference on the individual task states resulting
from these measurements.

|
High Running [

Priority |
Task Preempted

‘Waiting

Low Running
Priority  Preempted | )
Task Waiting L

High
Priority
Task

Low
Priority
Task

Execution Time on Hardware

l:l Measured Task Running l:l Inferred Task Preemption H EUm:nu'.‘m Kemel Latency

Interrupt =~ ------- Measured Start Time Measured Stop Time

Inspecting the diagram, it shows that the state of the low-priority task gets inferred from the higher-
priority task's execution. Since only the start and end times of task execution get measured, some
pertinent data can be lost, specifically kernel latency. As kernel latency precedes the start of the task,
the actual time of the interrupt event is not directly observed and the start time of the task can
assumed to be delayed from the actual time of the interrupt. Furthermore, when a task moves from
the preempted to the running states, the kernel latency gets added into the interpreted execution
time of the lower-priority task.

Code instrumentation profiling benefits from easy generation and deployment. On models deployed to
processors with operating systems running a single process in a single tasking mode, task execution
timing measurements be made with sufficient accuracy and precision. As only a minimal amount of
code to record the start and stop times of the task get added to each task, the impact of the task
execution timing by the code instrumentation profiler, inmost cases, can be considered negligible.

Limitations

Code instrumentation profiling provides lightweight measurement tooling of generated code.
However, two limitations must be considered when measuring the task execution and duration times
using the code instrumentation profiler. These limitations are as follows:

» Cannot measure kernel latency or components of kernel latency. Kernel latency can generally be
treated as a constant. As kernel latency impacts all task start up time with approximately equal
effect, an estimate of the kernel latency could be deduced with comparisons to the task timings in
simulation. For more information on kernel latency, see “Kernel Latency” on page 1-12



Code Instrumentation Profiler

Cannot capture the effect of commands issued to the OS kernel from within the task using Custom
Code blocks. The code instrumentation profiler records the start time, end time, and preemption
of a task by other tasks. However, when the task makes a call to the OS kernel, the code
instrumentation profiler does not record the change of control between the task and the kernel as
a preemption. As kernel calls, without detailed knowledge of the timing, can be treated as non-
deterministic, the measured task duration cannot be reliably measured using this type of profiler.
For more information on task duration, see “Task Duration” on page 1-16.

See Also
Task Manager

More About

“Kernel Instrumentation Profiler” on page 4-4
“Kernel Latency” on page 1-12
“Task Duration” on page 1-16

4-3



4 Analyze Performance on SoC Device

Kernel Instrumentation Profiler

A Kernel instrumentation profiler uses a subset of the software tools and libraries included in the
Linux kernel, for monitoring the actions made by the kernel to manage the execution of processes
running on the SoC hardware. SoC Blockset features use LTTng, an open source tracing framework
for Linux, as a Kernel instrumentation profiler to monitor the execution of tasks and events of the
Simulink model deployed on the SoC hardware. For more information, see the LTTng website.

Unlike a code instrumentation profiler, a kernel instrumentation profiler directly measures the
conditions and changes in state for all tasks by monitoring the Linux OS kernel. This diagram shows
the measurements made in a multitasking process with high and low priority tasks.

High Runmning .
Priority Frempied
Task Waiting !
i
Low Runmning I ;
Priority Frempied
Task Waiting i b
i
High
Priority
Task
Low
Priority
Task
- Measured Task Running Start Time
I:I Preempted Task  ------- Stop Time

When a high priority task preempts a low priority task, the low priority task enters into the
Preempted state and the high priority task enters into the Running state. After the high priority task
completes execution, the scheduler resumes the preempted low priority task.

4-4


https://lttng.org/

Kernel Instrumentation Profiler

When using a kernel instrumentation profiler, the LTTng tracing framework traces the task state
transitions directly from the Linux kernel and gives accurate task execution time. In comparison,
when you use a code instrumentation profiler, it can incorrectly include the kernel latency in the
execution time of the task.

Kernel instrumentation profiling provides these advantages.

* High accuracy of timing measurements
* Knowledge of task execution and task state transition directly from the kernel
* CPU information of the processor core where the task executes

Limitations

You can perform kernel instrumentation profiling only on SoC hardware that runs using a Linux OS.

Kernel instrumentation profiling for an unlimited time duration on hardware with high task rate
models could result in packet loss of profiling data streamed from hardware. For more information,
see “Task Profiling on Processor”.

See Also
Task Manager

More About

. “Profile Task Execution on Processor” on page 4-6
. “Code Instrumentation Profiler” on page 4-2

. “Kernel Latency” on page 1-12

. “Task Duration” on page 1-16



4 Analyze Performance on SoC Device

Profile Task Execution on Processor

4-6

The SoC Blockset enables you to monitor and record task execution timings and state from a
processor by using code and Kernel instrumentation profiling when a model contains a Task Manager
block. When you deploy and run the model on an SoC hardware board, the code or Kernel
instrumentation profiler streams the execution timing of the tasks managed by the Task Manager
block in the model to the host computer.

The Simulation Data Inspector application displays this data in real time. You can also record this
task execution data, which you can use with the Task Manager block to play back the task execution
in simulation.

Task Profiling of Model Running on Hardware

1 Open the Simulink model to profile it.
On the Modeling tab of the Simulink toolstrip, click Model Settings.

In the Configuration Parameters dialog box, select Hardware Implementation from the left
page. Then set Hardware board to an “SoC Blockset Supported Hardware”.

4 In the Hardware board settings section, expand Task profiling on processor, and select
Show in SDI.
Hardware board settings

» Task profiling in simulation

¥ Task profiling on processor

+| Show in SDI
Save to file
Instrumentation: |Code -

5 Set Instrumentation to Code or Kernel for code or Kernel instrumentation profiling,
respectively. Based on the profiling method you select, execution data is collected from the
processor and displayed on the Simulation Data Inspector application. You can select Kernel
instrumentation only when you have LTTng enabled in the Linux operating system running on
your hardware board. For more information about the instrumentation methods, see “Kernel
Instrumentation Profiler” on page 4-4 and “Code Instrumentation Profiler” on page 4-2.

6 Ifyou select Kernel to specify Kernel profiling, set Profiling Duration to Unlimited or

Limited.

* Unlimited — Performs Kernel profiling on the hardware and streams it to the Host PC for an
infinite time duration

Note Kernel profiling for an Unlimited time duration on hardware with low free disk storage
or a model with high task rates can result in packet loss of profiling data streamed from the
hardware. For more information, see “Task Profiling on Processor”.



https://lttng.org/

Profile Task Execution on Processor

* Limited — Performs Kernel profiling on the hardware and streams it to Host PC for a limited
time duration

Note Kernel profiling for a Limited time duration on hardware does not result in packet loss
of profiling data streamed from the hardware. For more information, see “Task Profiling on
Processor”.

7 Optionally select Save to file to log the measured task execution data into a file and save that
file to the <model> ert rtw/instrumented/diagnostics folder on your Host PC. You can
use this recorded data file with a Task Manager block to simulate the task execution timing on
your model.

8 On the Simulink toolstrip, on System On Chip tab, click Configure, Build & Deploy to deploy
and execute the code on the hardware board.

9 Open the Simulation Data Inspector application, to view the task execution timing for the
tasks and processors on which the tasks execute.

You can access and examine the logged data in the code generation folder used by the model. For
more information on accessing the recorded streaming profiled data, see “Recording Tasks for Use in
Simulation” on page 2-14. To use the recorded data in simulation, see “Task Execution Playback
Using Recorded Data” on page 2-7.

See Also

Task Manager

More About

. “Recording Tasks for Use in Simulation” on page 2-14
. “Code Instrumentation Profiler” on page 4-2

. “Kernel Instrumentation Profiler” on page 4-4



4 Analyze Performance on SoC Device

Memory Performance Information from FPGA Execution

4-8

In this section...

“Memory Performance Plots” on page 4-9
“Burst Waveforms” on page 4-14

“Configuring and Querying the AXI Interconnect Monitor” on page 4-14

Similar to the memory performance plots generated in simulation, you can collect memory
interconnect traffic information from a design running on the FPGA. You can then generate similar
performance plots. You can also capture the memory transaction information to view in the Logic
Analyzer tool similar to the burst transactions from the memory controller in simulation. Use these
plots to monitor real memory performance, debug and improve the design, and compare them against
the memory performance obtained in simulation.

To include an AXI interconnect monitor (AIM) IP in your design, in the configuration parameters of
the model, select the Include AXI interconnect monitor option under Hardware Implementation
> Target hardware resources > FPGA design (debug). The AXI interconnect monitor IP collects
information from the design while it is running on the FPGA. You can query this information from
MATLAB by using the JTAG connection. All memory masters in your FPGA are connected to the AXI
interconnect monitor IP. These masters can include Memory Channel and Memory Traffic Generator
blocks that you generated HDL code for or any other masters in your design.

JTAG
¢ > Memory
DDR Controller AX| Master IP

! }

AX] Interconnect

P }

AX] Interconnect Monitar IP

I !

Master 1 Master 2 Master M

FPGA

The SoC Builder tool generates a JTAG test bench script for your design. The script collects the
performance metrics from the AXI interconnect monitor and launches the performance plot



Memory Performance Information from FPGA Execution

application, which plots the memory performance plots for bandwidth, number of bursts, and
transaction latencies. These plots are similar to the plots of memory performance in simulation. You
can also modify the script to collect and display memory transaction waveforms similar to the burst
waveforms of memory controller in simulation. For information on the simulation memory
performance, see “Simulation Performance Plots” on page 2-17 and “Buffer and Burst Waveforms” on
page 2-26.

For an example, see “Analyze Memory Bandwidth Using Traffic Generators” on page 5-43, which
shows how to monitor memory performance in both simulation and when running on the FPGA. The
script generated by the SoC Builder tool uses the JTAG connection to enable any traffic generators
in your design, and then samples the memory performance information from the AXI interconnect
monitor IP as fast as it can. The sampling interval depends on the JTAG latency, which is typically
from 10 ms to 20 ms. The script then displays plots similar to the performance plots from the Memory
Controller block in your simulation. The plot displays the bandwidth, number of bursts, and
transaction latency for each master.

Note The AXI master itself is not connected to the AXI interconnect monitor. Therefore, the
hardware diagnostics do not include the memory usage plots for test-bench-only masters that
initialize the memory with predetermined data.

Memory Performance Plots

The script collects the performance metrics from the AXI interconnect monitor and launches the
performance plot application.

Memory Bandwidth Plots

In the Bandwidth tab, select the masters for which you want to graph bandwidth. Click Create Plot
to see the bandwidth, in megabytes per second, for the selected masters over the duration of the run
time. This figure shows the bandwidth for the “Analyze Memory Bandwidth Using Traffic Generators”
on page 5-43 example.

4-9



4 Analyze Performance on SoC Device

T Perforrance Plots for soc_memory_traffic_generator_aximaster.m = O >

~Bandwidth -

P ACREISISEN)

1800 T T T

1600

1400

Bandwidih (MB/s)

:

-

0 0.5 1 1.5 2
Time (sec)

| sster 1 M aster 2 [ Master 3 [0 Master 4]

Current Plot !nformaﬁon E = T Bandwldth Plo‘l Contfc;ls :
Masters to plot: 1,2,3,4. Bandwidth Bursts Latencies

To update the plot, select the controls on the right and click "Update”. Masters to plot:

Master 1
Master 2
Master 3
Master 4

B e
Memory Burst Plots

In the Bursts tab, select the masters for which you want to graph bursts. Click Create Plot to see
the number of bursts executed for the selected master over the duration of the run time. This figure

shows the burst count for the “Analyze Memory Bandwidth Using Traffic Generators” on page 5-43
example.

4-10



Memory Performance Information from FPGA Execution

|44 Perfermance Plots for soc_memory_traffic_generator_aximaster.m
Bursts

«10*

Bursts Executed

0 0.5 1 1.5 2
Time (sec)

|V aster I Master 2 [ Master 3 [ Master 4 |

Current Plot Information T Bursts Plot Controls
Mtens b plot 3.1, Bandwidth Bursts [atencies

To update the plot, select the controls on the right and click "Update’. Masters to plot:

WMaster 1
Waster 2
Master 3
Master 4

e

Memory Latency Plots

In the Latencies tab, select the master for which you want to graph latencies. Click Create Plot to
see the latency, for the selected masters over the duration of the run time. This image shows the total
latency for Master 1 in the “Analyze Memory Bandwidth Using Traffic Generators” on page 5-43
example. You can then zoom in to analyze the peak instantaneous latency.

4-11



4 Analyze Performance on SoC Device

4. Performance Plots for soc_memory_traffic_generator_aximaster.m — O o

Latencies

1.6

Latency ({s)
=
o0

0.4
0.2
0
0 0.5 1 1.5 2
Time (sec)
I C st Request to First Transfer Latency I st Execution Latency

[1Burst Last Transfer to Burst Complete Latency * |nstantanecus Total Latency

Current Plot Information Latencies Plot Controls

Master to plot: Master 1. Bandwidth Burste Latencies

Latencies: 'Burst request to first transfer complete’,'Burst

Master to plot:
execution’,'Burst last transfer to complete’.
To update the plot, select the controls on the right and click "Update’. {Master 1~
Latencies:

Burst request to first transfer complete
Burst execution
Burst last transfer to complete

Help

You can choose from any of these options:

* Burst request to first transfer complete — This option shows the time it takes from the
moment the master issues a transaction request to the first transfer of data. This latency accounts
for arbitration or interconnect delays.

* Burst execution — This option shows the time it takes from the first transfer of data to the burst
last transfer.

* Burst last transfer to complete — This option shows the time it takes from last transfer to
complete transaction. In case of read transaction, it is 0.

4-12



Memory Performance Information from FPGA Execution

* Instantaneous Total Latency — This option shows discrete total latency measurements per
burst.

Each latency value plotted is an average of the respective latency, measured from the memory
transactions over a sampling interval. The following figure shows an AXI4 Master protocol write and
read transaction on the hardware showing each of these latencies.

Write Transaction

ACLK

AWWVALID f \
AWREADY
WDATA s X f)‘ X ;
WLAST / \
WWVALID ," \
WREADY
BRESP FOKAYY
BVALID / \
BREADY / Y
Burst last
Burst request to first ) transfer to
transfer complete Burst execution complete
“* > < P

ACLK
ARVALID
ARREADY

RDATA :

RLAST
RVALID
RREADY

Read Transaction

N5 e I
[\
A i ¥
[\
/ \

Burst request to first

transfer CCIrﬂ|J|EtE Burst execution

L J

= i
- Lty

In read transaction, Burst last transfer to complete latency is zero.

Data Overflow

In Profile mode, the collectMemoryStatistics function samples memory metrics: bandwidth,
burst, and latencies values from the hardware after every sample. After that, the function resets the
metric counters and then starts the counters again for the next sample. If any of the metric counters
exceeds the limit of 232 — 1 within the sampling interval, the counter is overflowed and the
corresponding sample is indicated with * in the plot.

4-13



4 Analyze Performance on SoC Device

Burst Waveforms

You can also modify the generated script to configure the AXI interconnect monitor to collect event
data for each burst transaction. You can view these events in the Logic Analyzer waveform viewer to
examine arbitration behavior. Specify the number of transactions to capture, Trace capture depth,
in the configuration parameters of the model, under Hardware Implementation > Target
hardware resources > FPGA design (debug).

4 LogicAnalyzerPlot - Logic Analyzer - O x
9 1y 9 1y
LOGIC AMALYZER

I NE b € = gisloam| 4 & P Q @

Add  Add il Add  Previous  Mext Delete | {T) @, [#] Stepping Run Step Siop  Find  Settings
Divider Group 0}6 Cursor Transition Transition U = Opfions Forward -

EDIT CURSORE ZOOM & PAN SIMULATE FIND | GLOBAL

¥ Master1 BurstRequest

0ns

az0
Cursor 1| 386119194 ns 386119194 ns

The waveforms show the event type (BurstIdle, BurstRequest, BurstExecuting, or
BurstDone) and these parameters of the burst transaction:

* MasterID -- ID number of the memory master that made the request

* DataWidth -- Data width in bits

* BurstLength -- Number of data words in the burst request

* BurstsTransferred -- Number of bursts in this request (valid only with BurstDone event)
* BytesTransferred -- Number of bytes in this request (valid only with BurstDone event)

You can compare these waveforms with the waveforms captured from your Memory Controller block
in simulation.

Configuring and Querying the AXI Interconnect Monitor

The AXI interconnect monitor (AIM) is an IP core that collects performance metrics for an AXI-based
FPGA design. Create an socIPCore object to set up and configure the AIM IP, and use the
socMemoryProfiler object to retrieve and display the data.

For an example of how to configure and query the AIM IP in your design using MATLAB as AXI
Master, see “Analyze Memory Bandwidth Using Traffic Generators” on page 5-43. Specifically,
review the soc_memory traffic generator axi master.m script that configures and monitors
the design on the device.

4-14



Memory Performance Information from FPGA Execution

Select Memory Monitor Mode

The AXI interconnect monitor can collect two types of data. Choose Profile mode to collect average
transaction latency, and counts of bytes and bursts. In this mode, you can open a performance plot
tool, and then configure the tool to plot bandwidth, burst count, and transaction latency. Choose
Trace mode to collect detailed memory transaction event data and view the data as waveforms.

perfMonMode = 'Profile'; % or 'Trace'
Configure the AXI Interconnect Monitor

To obtain diagnostic performance metrics from your generated FPGA design, you must set up a JTAG
connection to the device from MATLAB. Load a .mat file that contains structures derived from the
board configuration parameters. This file was generated by the SoC Builder tool. These structures
describe the memory interconnect and masters configuration such as buffer sizes and addresses. Use
the socHardwareBoard object to set up the JTAG connection.

load('soc_memory traffic generator zc706 aximaster.mat');
hwObj = socHardwareBoard('Xilinx Zyng ZC706 evaluation kit', 'Connect', false);
AXIMasterObj = socAXIMaster (hwObj);

Configure the AIM. The socIPCore object provides a function that performs this initialization. Next,
set up a socMemoryProfiler object to gather the metrics.

apmCoreObj = socIPCore(AXIMasterObj,perf _mon, 'PerformanceMonitor', 'Mode',perfMonMode);
initialize(apmCoreObj);
profilerObj = socMemoryProfiler(hwObj,apmCoreObj);

Retrieve Diagnostic Data

To retrieve performance metrics or signal data from a design running on the FPGA, use the
socMemoryProfiler object functions.

For Profile mode, call the collectMemoryStatistics function in a loop.

NumRuns = 100;

for n = 1:NumRuns
collectMemoryStatistics(profilerObj);

end

JTAG design setup time is long relative to FPGA transaction times, and if you have a small number of
transactions in your design, they can be completed by the time you query the monitor. In this case,
the bandwidth plot shows only one sample, and the throughput calculation is not accurate. If this
situation occurs, increase the total number of transactions the design executes.

For Trace mode, call the collectMemoryStatistics function once. This function stops the IP
from writing transactions into the FIFO in the AXI interconnect monitor IP, although the transactions
continue on the interconnect. Set the size of the transaction FIFO, Trace capture depth, in the
configuration parameters of the model, under Hardware Implementation > Target hardware
resources > FPGA design (debug).

collectMemoryStatistics(profilerQbj);
Visualizing Performance Metrics

Visualize the performance data using the plotMemoryStatistics function. In Profile mode, this
function opens a performance plot tool, and you can configure the tool to plot bandwidth, burst count,

4-15



4 Analyze Performance on SoC Device

and average transaction latency. In Trace mode, this function opens the Logic Analyzer tool to view
burst transaction event data.

plotMemoryStatistics(profilerObj);

See Also

Memory Controller | collectMemoryStatistics | plotMemoryStatistics |
socMemoryProfiler

More About
. “Simulation Diagnostics” on page 2-26
. “Analyze Memory Bandwidth Using Traffic Generators” on page 5-43

See Also

4-16



Examples




5 Examples

Random Access of External Memory

This example shows how to model external memory accesses from FPGA for rotating an ASCII art
image. Many applications require FPGA to access memory in random fashion as per the requirements
of algorithm. You will learn how to design memory address generation along with other AXI4 master
signals to read and write specific regions of memory using SoC Blockset. You will simulate,
implement and verify your design on hardware.

Supported hardware platforms:

* Artix® 7 35T Arty FPGA evaluation kit

* Xilinx® Kintex® 7 KC705 development board

+ Xilinx Zyng® ZC706 evaluation kit

+ Xilinx Zynq UltraScale™ + MPSoC ZCU102 Evaluation Kit
* Altera® Cyclone® V SoC development kit

* Altera Arria® 10 SoC development kit

Design Task

The ASCII art image is encoded as 24-by-64 matrix of uint8 characters. The design task is to rotate
the image by modeling AX14 Master interfaces in FPGA logic for external memory access. By
simulating the design with external memory model and the AXI4 protocol, you verify the behavior at
application design time. This saves time otherwise spent in debugging the design on hardware during
the implementation phase.

The overall dataflow is as described in figure below. The image is stored in the external memory at
the memory region from address 0x00000000 to 0x000017FF. FPGA algorithm reads the image from
this region and rotates it by writing it in the reverse order into the memory region from 0x00001800.
Finally, the data is read back from the memory.

External External
Memory Memory

@AJ{M- Master write @ Output image

:> —

Ox00001800 FPGA Algorithm Ox00001200
@ Input image @AKM Master read
8 0x00000000 = 0x00000000

Model Structure

The models are structured using Model references. Top model ' soc_image_rotation ' includes the
FPGA model ' soc_image_rotation_fpga ' using Model block as model reference.

5-2



Random Access of External Memory

Random Access of External Memory

Memory Controller

Memary Controlier

esiReq
st Dox

bussiReq2
st Dox
rsiRegd
st Dox

busstReqd
rstDoned

Testbench Input Memory Region 1 FPGA Memory Region|2 Testbench Qutput

soc_image_rotation_fpga

H I | N ¥ rabata rdData wiData uats 5 I | N ® rdData rdData
O wiCtriin “ rdCtriCut rdCiriln wrCtriOut wrCirlin - rdCiriOut rdCIti

wwrCirlin rCariOut rdCtriin rdCiriCut wrCtriin wrCiriOut rdCirlin rdCiriCut

wiData wiData ¥

AXH Mastar Source TV AX14 Master Sink

Input Read Memery Ghannel Qulput Write Memory Channel

booleani1)
Algorithm Start.

Register Channel

Copyright 2019 The MathWorks, Inc.

The top model covers the following areas:

* Testbench Input: It models the stimuli to set up the design for simulation. The AXI4 Master
Source block initializes the input image data to the external memory. The Algorithm Start
block sends a Start signal to the FPGA algorithm via Register Channel block. Open preload
function soc_image rotation init.m to see how model parameters and input data are initialized.

+ Testbench Output: The AXI4 Master Sink block models the reading of the output image data
from the external memory. The output data is saved in the variable AXI4MasterSinkContent in the
workspace. Open stop function soc image rotation post.m to see how input data and output data
are plotted.

¢ Memory: Memory system is modeled using one Memory Controller and two Memory Channel
blocks. Input Read Memory Channel block models memory region 1 where input image is
stored and Output Write Memory Channel block models memory region 2 where the rotated
image is stored.

* FPGA: This area instantiates the FPGA model reference which models the logic for AXI4 Master
interfaces and data rotation.

FPGA model implements the algorithm in three subsystems, AXI4MasterRead, ReverseDataOrder
and AXI4MasterWrite. Open FPGA subsystem for image rotation:

5-3



5 Examples

Read one line of image data from
axternal memory as one AXI burst

Reverse the order of the line data

Write the reveresed data to
axternal memory as one AXK

burst and request next line

o

axim_rd_data

D

ool axim_rd_data

iata_in

axim_wr_data 4!

data_out N
- axim_wr_data

h 4

data_out

am_wr_m2s 4?@

ool axim_rd_s2m |

axim_rd_s2m

CO—

start

PositiveEdgeDetection

dvalid - cvalid_in

axim_wr_m2s

request_next_ns

dvalid
dvalid_out
dvalid_out

! start

axim_rd_m2s —D P ready

axim_rd_m2:

@—P axim_wr_s2m

axim_wr_s2m

AXl4MasterRead ReverseDataCrder

ready —‘

Axl4MasterWrite

As the positive edge of start signal is detected, AXIMasterRead reads one line of image data and
deliver it to ReverseDataOrder for reverses the order of data. The reversed data is then written to
external memory by AXIMasterWrite subsystem. Once the data for one line is written, it sends a
signal request next line to trigger reading of next line by AXIMasterRead. This cycle continues
until all lines of the image are processed.

Open AXI4MasterReadController and AXI4MasterWriteController blocks to inspect the MATLAB®
code for AXI4 Master interfaces. These blocks design the addressing logic for read and write
operations as per AXI4 protocol. SoC Blockset supports AXI4 Master protocol and for timing
diagrams of AXI4 signals, please refer to Model Design for AXI4 Master Interface Generation.

Simulation
Run the model and open the Logic analyzer from the FPGA model. Notice the following key points:
* One line of data is written/read by masters in one burst. Since each line is 64 characters long; the

burst length is 64 (0x40). Note this value on signals rd_len and wr_1len.

» Each character has 4 bytes as it is extended to uint32 data type, which makes the length of line
64x4 = 256 (0x100) bytes. Therefore, addresses increment/decrement by 0x100. Note this on
rd _addr and wr_addr signals.

* One read burst is followed by one write burst. Observe how rd dvalid and wr dvalid toggle
alternatively.

* request next line asserts after each write burst, which trigger the next read burst.



Random Access of External Memory

[54 soc_image_rotation_fpga - Logic Analyzer - m} *
LOGIC ANALYZER

@% [ﬂ@ 5 Qs @ @ F & > I Q ©

Add Add Tnf

1 Add  Previous Next U ® Stepping Run Step
Divider Group Cursor  Transition Transition Options Forward
EDIT

CURSORS ZOOM & PAN SIMULATE

Cursor 1

Find Seftings

-

FIND | GLOBAL

The input and output images are plotted at the end of simulation:

3-5



5 Examples

4 Input ASCII ART

ceSXinc ik axme
soraskiinsrooonam: . .
L. B ]

5-6



Random Access of External Memory

Implementation

Following products are required for this section:

* HDL Coder™
* SoC Blockset Support Package for Xilinx Devices, or
* SoC Blockset Support Package for Intel® Devices

To implement the model on a supported FPGA board, use the SoC Builder application. Make sure you
have installed required products and FPGA vendor software before implementation.

Open SoC Builder by clicking 'Configure, Build, & Deploy' button in the toolstrip and follow these
steps:

* Select 'Build Model' on 'Setup' screen. Click 'Next'.

* Click 'View/Edit Memory Map' to view the memory map on 'Review Memory Map' screen. Notice
that the base address 0x00000000 is assigned to Input Read Memory Channel block, and base
address 0x00001800 is assigned to Output Write Memory Channel block. The AXI4 address is
the sum of base address and address from FPGA algorithm. For example, wr_addr from FPGA
algorithm starts with 0x1700. The output data will be written to the external memory from
address 0x00001800 + 0x1700 = 0x00002F00. Refer to Model Design for AXI4 Master Interface
Generation for more information about base address register calculation. Click 'Next'.

5-7



5 Examples

» Specify project folder on 'Select Project Folder' screen. Click 'Next'.
* Select 'Build, load and run' on 'Select Build Action' screen. Click 'Next'.

* Click 'Validate' to check the compatibility of model for implementation on 'Validate Model' screen.
Click 'Next'.

* Click 'Build' to begin building of the model on 'Build Model' screen. An external shell will open
when FPGA synthesis begins. Click 'Next' to 'Load Bitstream' screen.

The FPGA synthesis may take more than 30 minutes to complete. To save time, you may want to use
the provided pre-generated bitstream by following these steps:

* Close the external shell to terminate synthesis.

* Copy pre-generated bitstream to your project folder by running the command below and then,

* Click 'Load' button to load pre-generated bitstream.

copyfile(fullfile(matlabroot, 'toolbox"', 'soc', 'socexamples', 'bitstreams', 'soc image rotation-zc70t

To run this example, copy the example test bench to your project folder.

copyfile(fullfile(matlabroot, 'toolbox"', 'soc', 'socexamples', 'soc_image rotation aximaster.m'), '.,

Enter the following command to run the test bench:

soc_image rotation aximaster

The test bench performs the following operations:

* Initializes image rotation IP

* Writes input image data to external memory

» Starts the image rotation operation

* Reads back and display output image data from external memory

If your FPGA board is not Xilinx Zynqg ZC706 evaluation kit you need to do the following settings in
the configuration parameters of the top model before launching the SoC Builder.
* Select the 'Hardware board' under 'Hardware Implementation' panel to match your board.

* Uncheck 'Include processing system' under 'Hardware Implementation -> Target hardware
resources -> FPGA design (top-level)' panel.

* Set 'Interconnect data width (bits)' to '32' under 'Hardware Implementation -> Target hardware
resources -> FPGA design (mem channels)' panel.

Available pre-generated bitstreams are:

* 'soc_image rotation-zc706.bit'

* 'soc_image rotation-arty.bit'

* 'soc_image rotation-kc705.bit'
* 'soc image rotation-alOsoc.sof'

Modify the copyfile command and example test bench to match your board and selected project folder
as appropriate. Note that pre-generated bitstream may not work if you customized the memory map.



Random Access of External Memory

Conclusion

This example shows modeling of AXI4 Master interfaces for accessing external memory in random
fashion using SoC Blockset by rotating an ASCII art image. You can use this as a guide to design your
own algorithm to access memory directly using AXI4 Master protocol.

5-9



5 Examples

Packet-Based ADS-B Transceiver

5-10

Packet-based systems are common in wireless communications. Data is received over the air and is
decoded as discrete packet data on a compute device. For given system requirements, it is difficult to
design a system and implement directly on SoC as it often involves long iterations of debugging and
integration on hardware since hardware effects are difficult to account for at design time. In this
example, you will design packet-based airplane tracking application based on Automatic Dependent
Surveillance Broadcast (ADS-B) standard, partitioned between FPGA and embedded processor.
Unlike traditional methods, you will simulate the application design with memory interface before
implementation on hardware using SoC Blockset to shorten development time. You will then validate
the design on hardware by automatically generated code from the model.

Supported Hardware Platforms:

* Xilinx® Zyng® ZC706 evaluation kit + Analog Devices® FMCOMMS?2/3/4 card.
* ZedBoard™ + Analog Devices FMCOMMS2/3/4 card.

Design Task and System Requirements

As per ADS-B standard a message packet contains a total of 120 bits which has an 8 bit preamble and
112 bits of information about the aircraft including its position and velocity. For an introduction to the
Mode-S signaling scheme and ADS-B technology for tracking aircraft, refer to the 'Airplane Tracking
Using MATLAB®' example in Communications Toolbox.

Our task is to design a system to receive ADS-B messages off the air and decode with following
performance requirements:

* Latency: 0.5 seconds

* Drop sample rate: < 1 in 105 messages
* Throughput: 0.125 MBps (for capacity of maximum 300 aircrafts)

Design Using SoC Blockset

Design Parameters: Data is transferred from FPGA to processor across shared memory as a frame
of samples. There are two key design parameters, Frame Size and Number of Buffers which affect
the above performance requirements.

* Frame Size: Frame Size is the number of samples in a frame. It will be used for determining the
buffer size in memory channel.

* Number of Buffers: Number of frame buffers in memory channel. Data is continuously written
into memory by FPGA algorithm as frame buffers which are then read by processor to execute its
identification algorithm task.

Select the design parameters to satisfy the system requirements as follows:

Design to Meet Latency Requirement: Latency is the time period between when the data is
received by the FPGA logic and the data is ready to be processed by the processor. It comprises of
two parts, latency through the FPGA logic and the latency for the processor to be available to process
data.

Latency through the FPGA logic is the time required for data processing through the FPGA. This is
typically on the order of a number of clock cycles with the clock running in MHz range. Latency for
the processor to be available to process data, is determined by the time it takes for samples to



Packet-Based ADS-B Transceiver

transfer from FPGA to processor through FIFO and memory frame buffers. If we size FPGA FIFO
equivalent to one frame buffer, then the maximum latency can be written as follows:

MaxLatency = (NumberOfBuf fers 4+ 1) = (TimeToGather AFrame)

As the Time to gather a frame is directly proportional to Frame Size, therefore, the maximum latency
in the data transfer is directly proportional to Frame Size and Number of buffers.

Time to gather a frame is a constant for continuously streaming applications and is equal to Frame
Size times the FPGA output sample time. However, for asynchronous packet-based systems, this time
also depends on the frequency of arrival of packets. If you choose a Frame size larger than the packet
size, then you may have to wait for an indeterminate time for arrival of all the packets required to
make a frame. If you choose the packet size smaller than packet size, then it will adversely affect the
throughput. Therefore, for asynchronous packet based systems, Frame Size equal to packet size is a
reasonable choice. This allows each packet to transfer to processor as soon as the FPGA processing is
completed, thereby reducing the latency.

For this example, the decoded packet length is 112 bits, packed into four 32-bit samples. So, the
frame size is 4.

Design to Meet Throughput Requirement: Throughput is the amount of data produced as output
per unit of time. This is a function of the data processing in FPGA and the data transfer & processing
by processor. For FPGA logic, the data is processed at clock frequencies of the order of MHz and an
output is produced every few clock cycles. For data transfer and processing by processor, it depends
on Frame Size. A typical tradeoff is larger Frame size results in higher throughput but it increases
the latency. Conversely, a smaller frame size results in lower latency but it decreases the throughput.

Design to Meet Drop Samples Requirement: An application may tolerate occasional drop data
caused by the variations in task execution durations. Frame buffers in a memory channel hold data
when it can't be immediately processed by the processor. Therefore, increasing the number of Frame
buffers reduces the sample drop-outs but it adversely affects the latency as explained earlier.

Choose the Number of Buffers value such that you are able to meet the Drop samples requirement
without affecting the maximum latency requirement.

For this example, the mean task duration, as measured on ZC706 is 114us. Each packet duration is
120us. Even if the packets arrive back to back, they can be processed with minimal number of frame
buffers since on average the task is processed before the new packet arrives. So, set the number of
frame buffers to the minimum possible, 3.

Create an SoC Model: Use the “SDR Template” on page 1-45 for creating an SoC model for wireless
communications applications.

5-11



5 Examples

Packet-Based ADS-B Transceiver

External /O

FPGA Memory Processor External /O

txDataOut

-

=

E Channel

rdBursiDone [— bursiDone2

E soc_ADSB_fpga
=

2

X
R

RaData chet [urcirl rdDats UDP data
) ‘m ~ . UDP Write
o

8
i}

LED1

FPGA Algorithm 2
LED? Mem Channel

LED2

B

5-12

Copyright 2019 The MathWorks, Inc.

The top model is depicted with bounding boxes that segment the model as follows:

External I/O: This part of the model contains the AD9361 RF Input and Output blocks which are
connected to each other using a simplified channel model. In addition this region has LED blocks
that connect the FPGA logic.

FPGA: The FPGA section of the model contains the FPGA algorithms which are designed in a
separate model and instantiated here using model reference.

Memory: This section models the memory channel between FPGA and processor. It simulates the
latencies in the HW/SW connection.

Register Channel: This section models three FPGA registers that are configured by the
Processor.

Processor: This section contains the Task Manager that is connected to processor model. The
Task Manager controls the scheduling of processor tasks. The processor algorithm and
initialization tasks are modeled in a separate model and is instantiated here using model
references.

FPGA model contains the ADS-B Transmitter Algorithm that transmits test ADS-B packets at a
variable rate and the ADS-B Receiver Algorithm that decodes received ADS-B messages.



Packet-Based ADS-B Transceiver

ChiQ_Ch1l_RF

valid RF

» 2 )

TxData

Ch10_Ch1l_FPGA | ————®|FPGAdata

ADS-B Tx Algorithm

RxData

dataCut

ADS-E Data Source Select

chCtrlin

Ses note in ADS-B Rx
about back-pressure.

Copyright 2019 The MathWorks, Inc.

"‘,‘:]u;li‘-" ready »
-

o
L

Bus Selectorl

dataOut

dataln

validOut

crcValid

readyFramDown

datalropped

(1)

TxValid

> 3 )

chData

P valid 5o
:“«WIBUS

Bus Creator

D)

chCtriOut

validPacket LED

dataDropped_LED

» 6 )

LED1

ADS-B Rx Algorithm

» 5 )

LEDZ

An LED will toggle with each received packet.
An LED will light when data has been dropped.

The processor model contains Processor Algorithm that unpacks the received ADS-B packets into
information bits and sends them via UDP Send block to another system for reporting the aircraft
information. The processor algorithm task is denoted as dataTask in the Task Manager block and is
specified as event-driven. The Task Manager schedules data asynchronously by means of a buffer
ready event rdEvent in the memory channel.

Asynchronous Task

Specification

UDF data

'orks, Inc.

CGO— ex
dataTask
r
Trigger()
Do
L2 ] data
data
Processor Algonthm Wrapper
Copyright 2019 The Math

UDF data

(1} initialize

Initialize Function

5-13



5 Examples

5-14

The Initialize Function subsystem initializes appropriate hardware configuration registers. The
AD9361 blocks set the center frequency, gain mode, and baseband sample rate of the attached FMC
RF board. The other blocks model three memory mapped configurations of the ADS-B packet detector
datapath. These include selection of input to receiver algorithm, transmit period of test packets from
FPGA and threshold value for detection algorithm.

The model soc ADSB UDP HostPrintout is a host UDP-based receive model that decodes ADS-B
messages. Run this model in parallel to the ADSB simulation or deployment model to display the
decoded ADS-B messages and also optionally map the aircraft location.

Host Model for Receiving ADS-B Messages

HOST
data I+ dataFeceived
LIDP| =+ ‘¢
langth pldatalength  MapResults
Paort: 25000

Copyright 2018 The MathWorks, Inc.

Simulate

Run the model to visualize data transfer between the FPGA and the processor. The time period
between the arrival of packets is a function of number of aircrafts. Given system requirement of
detecting 300 aircrafts, there will be on average 300%6.2 = 1860 messages per second (or a message
every 1/1860 = 0.54 ms). You can set the number of aircrafts using the variable NumAircraft which in
turn sets the period in the Initialize Function subsystem. The default setting is 300 to match the
allowable system capacity.

Open the Logic Analyzer window to see the waveforms, and notice that the memory transfers are
taking place in buffers of 4 samples, or 16 bytes.



Packet-Based ADS-B Transceiver

B soc_ADSB - Logic Analyzer o o EBE3
LOGIC ANALYZER TRIGGER E (7]
L Bl g ¢ [ <& = gmleaan € @ P @0Q &

Add  Add [l Add  Previous Next  [ij Detete | 77 G Stepping R SEep S0 Setings

Divider Group D{ Curser Transition Trar;xniun e U Q E‘ Options ot Forward ; F:'d

EDIT | CURSORS | ZOOM & PAN SIMULATE

FIND | GLOBAL

]

Mem Controller/dd/dl/Debug Level yiesTransferred=

To view the external memory bandwidth usage, open the Mem Controller block, select the
Performance tab and click View performance plots . Select all the masters and click Create Plot. The

plot shows the bandwidth of 0.125 MBps. Since 4 bytes of data is transferred every 32us, the
expected bandwidth is 4/32e-6 = 0.125 MBps.

5-15



5 Examples

4. Performance Plots for soc_ADSB/Mem Controller — Od *

Bandwidth

0.14

0.08

MBis

0.06 i

0.04 - 1

0.02

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Simulation time (us)

B iaster 1 ] Master 2

Current Plot Infermation Bandwidth Plot Controls
Masters to plat: 1,2. Bandwidth Bursts Latencies
Sampling interval (s): auto (0.0001274 s) Masters to plot
To update the plot, select the controls on the nght and click 'Create Plat’. |i| Master 1
[w] master 2

Sampling interval (s).  aulo

Help . Create Plot

Using the Simulation Data Inspector, you can visualize the task execution schedule. The data task is
driven by the event from FPGA notifying the processor that a packet has been decoded by the FPGA,
written to external memory, and read by the DMA driver.

5-16



Packet-Based ADS-B Transceiver

4\ Simulation Data Inspector - untitled” - m} X
Q 4 L3
mspect Compare m DataReadTask
Filter Signals Rurming |
» Run 1: soc_ADSB [Current] [ ]
. validin:1 e
Switch:1 D
Subsystem2:1 —
E pop T
PackedData — Preempied |
. last_Word , -
In1:1 —
' HDLTxIpCore1:2 —
- DataReadTask_drop L
p D
Archive (1) Waiting 4
g Properties 0.001 0.002 0.003 0.004 0.005 0.008 0.007 0.008 000 0010
To see the decoded messages, run the companion UDP receive model. This model will display the
aircraft tracking information on a GUI.
_.{ ADS-B Aircraft Tracking [ =
Packet statistics
L b M
Detected Decoded S RETTEE |
Short squitter: | 0 | 0 Start Logging |
Extended squitter: | 19 | 19 .
Other Mode-S Packets: | 0 | NJA HESENIE.
Current | Aircraft ID | Flight ID |Latitude[deg)lLongitude(deg)|Altitude(ft)|Speed(knots)|Heading(") |Vertica| Rate(ftfmin)l Time
1 |+ 3C56EA EWGE) 55.7467 -4,1555 23030 365 116 (SE) 2560 13:21:24
2 C025A8 W]AZ 35,7996 -4,1275 32000 492 317 (Nw) 64 13:21:14
3
4
5
3]
7
g
2]
10
11
12
13
14
15

Latency (frames): 0

Lost samples (samples): 0

5-17



5 Examples

Hardware Requirements Analysis

As discussed earlier, since mean task duration of 114us is less than the packet duration of 120us, the
messages are not dropped on average, during the transfer to the processor. This is confirmed by
looking at the number of dropped samples at FIFO using signal icFIFODroppedCount in the
Simulation Data Inspector.

WAVE L3 E @

LOGIC ANALYZER TRIGGER

td Sl e [ ey e e L Gl Q ©
Add  Add il Add  Previ Ned i Detete | T & i Ru Step  Stop | Fi Seti
Divider Group '{ Cursor 1[;“5;;::1 Transition . ! Q lEl %‘:ﬁﬂ?_g . Fuwgld FTd *o

4]

EDIT CURSORS ZO0OM E PAN SIMULATE FIND | GLOBAL

Mem Channel/dd/diVDebug Level 2/\Writer/<icFIFODroppedCount=

Cursor 1

The SoC model can be used to explore the design space. Consider the worst-case scenario when the
plane messages are received densely and there is more computation load on the processor. You can
modify the model settings and simulate and determine whether packets are dropped in this more
aggressive scenario.

Set the NumAircraft to 990 (a new message every 163us) to simulate back to back arrival of plane
messages. Modify the task specification on the Task Manager block to simulate more computation
load on processor. On the Simulation tab, choose the second distribution by setting the Percent value
to 100% on second row and 0% on the first row. This assigns a mean task duration of 163us, which
will result in some task executions taking longer than allowed. Set the simulation time to 0.1ms and
simulate. For 990 planes, the messages arrival rate is 990*6.2 = 6138 messages per second. The drop
packet requirement is therefore, 6138/105 = 58 messages per second or 5.8 messages in 0.1 sec.
Upon simulation notice in the Logic Analyzer that this requirement is violated as 18 messages have
been dropped.

Implement and Run on Hardware

Following products are required for this section:

 HDL Coder™

* Embedded Coder®

* “SoC Blockset Support Package for Xilinx Devices”

To implement the model on a supported SoC board use the SoC Builder tool. By default, the model
will be implemented on Xilinx® Zynq® ZC706 evaluation kit as it is configured with that board. To

open SoC Builder, select the 'System on Chip' tab in the Simulink toolstrip, and click the 'Configure,
Build, & Deploy' button. Once SoC Builder opens, follow these steps:

5-18



Packet-Based ADS-B Transceiver

* Select 'Build Model' on 'Setup' screen. Click 'Next'.

* Click 'View/Edit Memory Map' to view the memory map on 'Review Memory Map' screen. Click
'Next'.

» Specify project folder on 'Select Project Folder' screen. Click 'Next'.

* Select 'Build, load and run' on 'Select Build Action' screen. Click 'Next'.

* Click 'Validate' to check the compatibility of model for implementation on 'Validate Model' screen.
Click 'Next'.

* Click 'Build' to begin building of the model on 'Build Model' screen. An external shell will open
when FPGA synthesis begins. Click 'Next'.

* Click 'Test Connection' on 'Connect Hardware' screen to test the connectivity of host computer
with SoC board. Click 'Next' to go to 'Run Application' screen.

The FPGA synthesis may take more than 30 minutes to complete. To save time, you may want to use
the provided pre-generated bitstream by following these steps:

* Close the external shell to terminate synthesis.
* Copy pre-generated bitstream to your project folder by running the command below and then,
* Click 'Load and Run' button to load pre-generated bitstream and run the model on SoC board

copyfile(fullfile(matlabroot, 'toolbox', 'soc', 'socexamples', 'bitstreams"', 'soc ADSB-zc706.bit'),
Implementation on ZedBoard: To implement the model on ZedBoard, you must first configure the

model to ZedBoard and set the following example parameters. Open Model Configuration
Parameters, navigate to Hardware Implementation tab and perform the following:

» Select ZedBoard from the drop-down list under 'Hardware board' on both top and processor
model.

* Navigate to Target hardware resources > FPGA design (top level) tab, enable Include
MATLAB as AXI Master IP for host-based interaction and set IP core clock frequency
(MH2z) to 4 MHz.

* Navigate to Target hardware resources > FPGA design (debug) tab and enable Include AXI
Interconnect monitor.

» Navigate to Device details and select Support long long on both top and processor model.

Next, open SoC Builder and follow the steps as previously stated for Xilinx® Zyng® ZC706 above.
Modify the copyfile command to match Zedboard bitstream 'soc ADSB-zedboard.bit'.

Profiling Results

To enable processor task profiling, open configuration parameters and navigate to Hardware
Implementation > Hardware Board settings > Task Profiling on processor and select 'Show on
SDI' and 'Save to file'. Set the Simulation stop time to 10 seconds and run the model in external
mode. After simulation is completed, open Simulation Data Inspector (SDI) and navigate to the latest
run and add signal DataReadTask to the plot. Observe that the simulation model accurately predicted
how the application would perform on hardware.

5-19



5 Examples

Q

Inspect
Filter Signals

+ Run 1: soc_ADSBE_sw

Core: 0

=
2

1

‘ Archive

Properties

Core: 1

DataReadTask_drop

-

Compare

Running

I

Preempted

Waiting

25024 25038

N DataReadTask

2,

25028

25040 25042 2.5044 25048 25048 2.5050 25052 25054

Summary

This example showed how SoC Blockset is used to design packet-based ADS-B standard to meet
system requirements. By simulating the design with memory channel as interface between the FPGA
and the Processor you validated that the system requirements of throughput and drop packets are
met at the design time. You implemented the design on SoC device from the model and verified the
results on hardware. Although ADS-B is not a computationally intensive standard, it is useful to
demonstrate the design process for packet-based systems intended for implementation on a SoC
device. You can follow the same design procedure for even more computationally intensive
requirements for this application or another packet-based application.

5-20




Histogram Equalization Using Video Frame Buffer

Histogram Equalization Using Video Frame Buffer

Video processing applications often store a full frame of video data to process the frame and modify
the next frame. In such designs video frames are stored in external memory while FPGA resources
are used to process same data. This example shows how to design a video application with HDMI
input and output performing histogram equalization using external memory for video frame buffering.

Supported hardware platform
* Xilinx® Zyng® ZC706 evaluation kit + FMC-HDMI-CAM mezzanine card
Design Task and System Requirements

Consider an application involving continuous streaming of video data through the FPGA. In the top
model soc_histogram equalization top the FPGA calculates the histogram of the incoming video
stream, in the 'FPGA' subsystem, while streaming the same video stream to external memory for
storage. Once the histogram has been calculated and accumulated across the entire video frame, a
synchronization signal is toggled to trigger the read back of the stored frame from external memory.
The accumulated histogram vector is then applied to the video stream read back from external
memory to perform the equalization algorithm. The external memory frame buffer is modeled using
the 'Memory Channel' block in AXI4-Stream Video Frame Buffer mode.

The 'HDMI Input' block reads a video file and provides video data and control signals to downstream
FPGA processing blocks. Video data is in YCbhCr 4:2:2 format, and the control signals are in the
pixel control bus format. The '"HDMI Output' block reads video data and control signals, in the
same format as output by the 'HDMI Input' block, and provides a visual output using the Video
Display block.

The Push Button block enables bypassing of the histogram equalization algorithm, routing the
unprocessed output from the external memory frame buffer to the output.

Histogram Equalization Using Video Frame Buffer

FPGA Output

Frame based processing

2

- - HDMI

HDMI

hdmiDataOut | hdmiTxData

- 4~

hdmiCHOut

I
%

frBufWrData

il
LED
hdmiCirlin
External Memory Memory Controller

=)
Push Butlon . H DDR
pbBypass § 5 . 3 o 9 2 % % 9 ]
a : g i | 3
1 1 i

z g
¢ ] it

ssiReq
st Do
burst e
st Do

Reg:

o burstReg:

2 i

4 bursiDonet

2

Copyright 2019 The MathWorks, Inc

5-21



5 Examples

There are a number of requirements to consider when designing an application that interfaces with
external memory:

* Throughput: What is the rate that you need to transfer data to/from memory to satisfy the
requirements of your algorithm? Specifically for vision applications, what is the frame-size and
frame-rate that you must be able to maintain?

* Latency: What is the maximum amount of time that your algorithm can tolerate between
requesting and receiving data? For vision applications, do you need a continuous stream of data,
without gaps? Are you able to buffer samples internal to your algorithm in order to prevent data
loss when access to the memory is blocked?

For this histogram equalization example, we have defined the following requirements:

* Throughput must be sufficient to maintain a 1920x1080p video stream at 60 frames-per-second.
* Latency must be sufficiently low so as not to drop frames.

With the above throughput requirement, we can calculate the value that is required for the frame
buffer:

1920 = 1080 = 60 = 124.416 Msps

As the video format is YCbCr 4:2:2, we require 2 bytes-per-pixel (BPP), this equates to a throughput
requirement of

2% 124.416 = 248.832MB/s

Because the algorithm must both write and read the video data to/from the external memory, this
throughput requirement must be doubled, for a total throughput requirement of

2 » 248,832 197.664MDB /s
Design Using SoC Blockset

In general, your algorithm will be a part of a larger SoC application. In such applications, it is likely
that there will be other algorithms also requiring access to external memory. In this scenario, you
must consider the impact of other algorithm's memory accesses on the performance and
requirements of your algorithm. Assuming that your algorithm shares the memory channel with other
components, you should consider the following:

* What is the total available memory bandwidth in the SoC system?

* How will your algorithm adapt to shared memory bandwidth?

* Can your algorithm tolerate an increased read/write latency?

By appropriate modeling of additional memory consumers in the overall application, you can

systematically design your algorithm to meet your requirements in situations where access to the
memory is not exclusive to your algorithm.

To avoid modeling of all memory readers and writers in the overall system, you can use 'Memory
Traffic Generator' blocks to consume read/write bandwidth in your system by creating access
requests. In this way, you can simulate additional memory accesses within your system without
explicit modeling.

5-22



Histogram Equalization Using Video Frame Buffer

Modeling Additional Memory Consumers

When implemented on hardware, the HDMI output requires an additional frame buffer for
synchronization of the video stream data between clock-domains, and introduces an additional
memory consumer in the overall system. You can model this using Memory Traffic Generator
blocks to simulate the additional memory consumption. As we are modeling both read and write
transactions, we will use two Memory Traffic Generator blocks - one each for read and write.

Based on the throughput calculation for our 1080p video stream, we know that the additional frame
buffer will require 497064 MB/s of bandwidth for simultaneous read and write access.

The write transactions are modeled by HDMI Buffer Write and the read transactions are modeled
by HDMI Buffer Read. The block mask for both are shown below.

Memory Traffic Generator (mask) (link)

Generate read or write requests to memaory as a dummy master. This block
can be used to model the impact that ancther master has on your
application without explicitly designing that master.

The block outputs memory request signals which should be connected to
the burstReq and burstDone ports of a Memory Controller block. These
signal lines do not transmit data.

The Burst length parameter is derived from the Burst size and Controller
Data Width specified in the Hardware Implementation Pane.

In generated code, this block outputs uniformly distributed traffic request
signals. In simulation, when 'Allow simulation-only parameters' is selected,
this block provides more control than the generated code. Set the Random
time between bursts parameter to specify the min and max values between
bursts.

Parameters

Request type | Writer -

Total burst requests |inf | :

Burst size (bytes) |hi5teqp.ChBur5tLength | :

Datapath width (bits): 64
Burst length (beats): 24

Time between bursts (s): |hi5teqp.TimeEetweenBursts | :

[ Allow simulation-only parameters

Cancel Help Apply

Block Parameters: HDMI Buffer Read b4
Memory Traffic Generator (mask) (link)

Generate read or write requests to memory as a dummy master. This block
can be used to model the impact that another master has on your
application without explicitly designing that master.

The block outputs memory request signals which should be connected to
the burstReq and burstDone ports of a Memory Controller block. These
signal lines do not transmit data.

The Burst length parameter is derived from the Burst size and Controller
Data Width specified in the Hardware Implementation Pane.

In generated code, this block outputs uniformly distributed traffic request
signals. In simulation, when 'Allow simulation-only parameters' is selected,
this block provides more control than the generated code. Set the Random
time between bursts parameter to specify the min and max values between
bursts.

Parameters

Request type Reader -

Total burst requests |imc | 5

Burst size (bytes) |hi5teqp.ChBur5tLength | :

Datapath width (bits): 64
Burst length (beats): 24

Time between bursts (s): |hi5teqp.TimeBetweenBursts | :

[ Allow simulation-only parameters

Cancel Help Apply

The total burst requests are configured as inf, as we want to simulate a continuous stream of data to/
from the memory. This will ensure that the traffic generator block will continue to issue transaction

requests for the entirety of the simulation.

The burst size is specified as 192, which is the 1/10th of pixels per line. As the burst size is specified
in bytes, this is equivalent to one tenth of a single line of a single component of the output video
stream, i.e. a single line of the Y-component of the YCbCr 4:2:2 video stream.

The time between burst is specified as 1/1296000. This can be expanded as

5-23



5 Examples

192
1080 = 1920 = 60 = 2

where,

192 is the number of bytes per burst,

1080 is the number of lines in the video stream,

1920 is the number of pixels per line in the video stream,

60 is the number of frames-per-second and,

2 is the number of components in our video stream.

Putting the above parameters together, we can calculate our requested throughput as follows:
192 = 1296000 = 248.832MDB/s

And, as we have two traffic generators to simulate both read and write transactions, the total

bandwidth consumption will be 497-664 MB /s

Simulating the system with the above settings results in the following Memory Bandwidth Usage plot.

5-24



Histogram Equalization Using Video Frame Buffer

"4\ Performance Plots for soc_histogram_equalization_top/Memory Controller — O X
Bandwidth
1000
900 7
800 7
700 N
600 N
@£
o 500 i
=
400 b
300 7
200 7
100 N
0
0 2 4 6 8 10 12 14 16 18
Simulation time (us) %10
I \iaster 1 [ Master 2 [ Master 3 [ Master 4
[ Master 5
Current Plot Information Bandwidth Plot Controls
Masters to plot: 1,2,3.4.5. Bandwidth Bursts Latencies
Sampling interval (s): auto (0.001605 s). Masters to plot:
To update the plot, select the controls on the right and click Master 1 Master 5
'Create Plot'". Master 2
Master 3

Here, the memory masters are as follows:
1
2
3
4
5

You can see that all 4 active masters are consuming 248.8 MB/s of memory bandwidth.

Master 1: Frame Buffer write

Master 2: Frame Buffer read

Master 3: HDMI Buffer Write (Memory Traffic Generator)

Master 4: HDMI Buffer Read (Memory Traffic Generator

Master 5: Contention (Memory Traffic Generator) (commented out)

More Memory Consumers: Consider that your algorithm is part of a larger system, and a secondary
algorithm is being developed by a colleague or third-party. In this scenario, the secondary algorithm

5-25



5 Examples

5-26

will be developed separately for the interest of time and division of work. Rather than combine the
two algorithms into a single simulation, you can model the memory access of the secondary algorithm
using a Memory Traffic Generator, and simulate the impact, if any, that it will have on your algorithm.

For example, assume that you are provided with the following memory requirements for the
secondary algorithm:

* Throughput: 650 MB/s

Given that we know that at any one time the primary algorithm, plus the HDMI output frame buffer, is
consuming ~995 MB/s of the memory bandwidth, and our total available memory bandwidth is 1600
MBY/s, we know that with the total bandwidth requirement for our system exceeds the total available
bandwidth by ~50 MB/s.

To enable the modeling of the secondary algorithm memory access, uncomment the Contention
Memory Traffic Generator block. The block mask settings are shown below.



Histogram Equalization Using Video Frame Buffer

Block Parameters: Contention t
Memory Traffic Generator (mask) (link)

Generate read or write requests to memory as a dummy master. This block
can be used to model the impact that another master has on your application
without explicitly designing that master.

The block outputs memory request signals which should be connected to the
burstReq and burstDone ports of a Memory Controller block. These signal lines
do not transmit data.

The Burst length parameter is derived from the Burst size and Confroller Data
Width specified in the Hardware Implementation Pane.

In generated code, this block outputs uniformly distributed traffic request
signals. In simulation, when 'Allow simulation-only parameters’ is selected, this
block provides more control than the generated code. Set the Random time
between bursts parameter to specify the min and max values between bursts.

Parameters
Request type |Reader -
Total burst requests |5EID | :

Burst size (bytes) |2048 IE

Datapath width (bits): 64
Burst length (beats): 256

Allow simulation-only parameters

Simulation-only parameters

First burst time: |0.03 IF

Random time between bursts (s): |[1/332800 1/332800] IF

Wait for burst done
] Enable assertion

Cancel Help Apply

Simulating the system with the secondary algorithm's memory accesses, results in the following
Memory Bandwidth Usage plot.

5-27



5 Examples

¥ Performance Metrics for soc_histogram_equalization_top/Mem Co ~ = « X
Eile Edit “iew |Insert Tools Desktop Window Help o

Nade | 2|0 »E
Memory Bandwidth Usage

1000
800
e
o 600
=
400
200
0
0 0.05 0.1 0.15
Simulation ime (s)
ot 1
I Pt 2
N Fort 3
I Port 4
[ rort s
v Port 1 v Port 2 [v| Port 3 [v] Port 4
Port 5 Owverall
Sampling interval: | 1/60

Plot Data Throughput |

Plot Mumber of Bursts Executed |

Plot Burst Start Latency |

Plot Burst End to End Latency |

As you can see, the combined required memory bandwidth exceeds the available bandwidth at around
0.03s - when the secondary algorithm begins memory access requests, resulting in the other masters

5-28



Histogram Equalization Using Video Frame Buffer

not achieving their required throughput. Looking at the logic analyzer waveform, we can see this
manifested as dropped buffers for the Frame Buffer write master, meaning that the input video frame
will not be written to memory.

soc_histogram_equalization_top - Logic Analyzer

LOGIC ANALYZER TRIGGER

H EBEoeee d € & g cag € ® P @wQ &

Add  Add i
g s § @

Add  Previous _ Next [ Deket= §7j (| [#] Stepping Run Step  Siop  Find | Settings
Cursor Transition Transition Options Forward -

CURSORS | zoom & Pan | SIMULATE | Fin | GLoBaL |

Implement and Run on Hardware
Following products are required for this section:
 HDL Coder™

* SoC Blockset Support Package for Xilinx Devices. For more information about the support
package, see “SoC Blockset Supported Hardware”

To implement the model on a supported SoC board use the SoC Builder application. Open the mask of
'FPGA' subsystem and set model variant to 'Pixel based processing'.

Comment out 'HDMI Buffer Write', 'HDMI Buffer Read' and 'Contention' blocks.

Click, 'Configure, Build, & Deploy' button in the toolstrip to open SoC Builder

5-29



5 Examples

* Select 'Build Model' on 'Setup' screen. Click 'Next'.

* Click 'View/Edit Memory Map' to view the memory map on 'Review Memory Map' screen. Click
'Next'.

» Specify project folder on 'Select Project Folder' screen. Click 'Next'.

» Select 'Build, load and run' on 'Select Build Action' screen. Click 'Next'.

* Click 'Validate' to check the compatibility of model for implementation on 'Validate Model' screen.
Click 'Next'.

* Click 'Build' to begin building of the model on 'Build Model' screen. An external shell will open
when FPGA synthesis begins. Click 'Next'.

* Click 'Next' to 'Load Bitstream' screen.

The FPGA synthesis may take more than 30 minutes to complete. To save time, you may want to use
the provided pre-generated bitstream by following these steps:

* Close the external shell to terminate synthesis.
* Copy pre-generated bitstream to your project folder by running the command below and then,
* Click 'Load and Run' button to load pre-generated bitstream and run the model on SoC board

copyfile(fullfile(matlabroot, 'toolbox"', 'soc', 'socexamples', 'bitstreams', 'soc histogram equalizat.

Now the model is running on hardware. To get the memory bandwidth usage in hardware, execute
the following aximaster test bench for soc_histogram equalization top aximaster.

The following figure shows the Memory Bandwidth usage when the application is deployed on
hardware.

5-30



Histogram Equalization Using Video Frame Buffer

4| Performance Plots for HSBUnitTestWF.m — Od >
Bandwidth

SDD T T T T T T

450 4

400 g

3560 .

300 g

MB/fs

280

200

150

100

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
Time (sec)

|-r'.'155ter 1 [ IMaster 2 |

Current Plot Information Bandwidth Plot Controls
Masters to plot: 1,2. Bandwidth Burcte Latenciec

To update the plot, select the controls on the right and click ‘Create Plot. Masters to plot:

Master 1
Master 2

Help

Summary

You designed a video application with real time HDMI I/O and frame buffering in external memory.
You explored effects of other consumers of memory on overall bandwidth. You used SoC Builder to
implement the model on hardware and verify the design.

5-31



5 Examples

Streaming Data from Hardware to Software

This example presents a systematic approach to design the data-path between hardware logic (FPGA)
and embedded processor using SoC Blockset. Applications are often partitioned between hardware
logic and embedded processor on a system-on-chip (SoC) device to meet throughput, latency and
processing requirements. You will design and simulate the entire application comprising of FPGA &
processor algorithms, memory interface and task scheduling to meet the system requirements. You
will then validate the design on hardware by generating code from the model and implementing on a
SoC device.

Supported hardware platforms:

* Xilinx® Zyng® ZC706 evaluation kit

+ Xilinx Zynq UltraScale™ + MPSoC ZCU102 Evaluation Kit
* ZedBoard™ Zyng-7000 Development Board

* Altera® Cyclone® V SoC development kit

» Altera Arria® 10 SoC development kit

Design Task and System Requirements

Consider an application that continuously process data on the FPGA and the embedded processor. In
this example, the FPGA algorithm filters the input signal and streams the resulting data to the
processor. In the implementation model soc hwsw stream implementation, the Buffer block
represents the transfer of data from FPGA to processor. The processor operates on the buffered data
and classifies the data as either high or low frequency in the Processor Algorithm subsystem. FPGA
generates a test data of either low or high frequency sinusoid based on the DIP switch setting in Test
Data Source subsystem.

External Input FPGA Buffer Processor Testbench Output
DIP Switch )
y FPGA
Low Freq Signal DptaOut
Wector
Buffar Scopa

v
i
v

>
-

w

o SourceSelectqr Dataut Patd i Ly Freq

High Freq Signal

v
]

Processor Algorithm

Detected Signal (LEDs)

High Freq

Low Freq

Copyright 2019 The MathWarks, Inc.

The application has following performance requirements:

* Throughput: 10e6 samples per second
¢ Maximum latency: 100ms

5-32



Streaming Data from Hardware to Software

» Samples dropped: < 1 in 10000
Challenges in Designing Datapath

The FPGA processes data sample by sample while the processor operates on a frame of data at a
time. The data is transferred asynchronously between FPGA and processor, and the duration of
software task can vary for each execution. Therefore, a queue is needed to hold the data between
FPGA and processor to prevent data loss. This queue is implemented in two stages, one as a FIFO of
bursts of data samples in FPGA memory and other as a series of frame buffers in external memory.
You will need to set three parameters related to the queue: frame size (number of samples in a frame
of data), number of frame buffers and FIFO size (number of bursts of samples in FIFO).

FIFO Size Number of Buffers Frame Size |
Burst V Frame
Ts fns) Tb “emow BT | w Ti (ms)
{us) TR Memory Ala2
A|g1 Sample 2 A (j —-—— - t ——————— —E;:T J* Reader 9
s
FPGA Processor

Figure 1

These design parameters affect performance and resource utilization. Increasing the frame size
allows more time for software task execution and to meet throughput requirements at the cost of
increasing latency. Typically, you set these parameters only when you are ready to implement on
hardware, which presents the following challenges:

» It is difficult to debug issues like dropping of samples in hardware due to lack of visibility.

+ It is difficult to design your application efficiently without first evaluating the effects of hardware
interfaces. It can take many design-implementation iterations as you can assess performance only
via implementation on hardware.

+ It is difficult to optimize design since performance and cause-effect relationships are difficult to
determine through implementation.

Ideally you want to account for these hardware effects while you are developing the application at
design time, before implementing and running on hardware. One way to satisfy these requirements is
to simulate the hardware effects, at design time. If you can simulate the variation in task durations,
utilization of memory buffers/FIFOs and external memory transfer latencies, you can evaluate their
effects on application design and implement the proven design on hardware. SoC Blockset allows you
to simulate these effects so you can evaluate the performance of the deployed application before
running on hardware.

Design Using SoC Blockset

Create an SoC model soc hwsw stream_top from the implementation model
soc_hwsw stream implementation using the “Stream from FPGA to Processor Template” on page 1-
41. The top model includes FPGA model soc_ hwsw_stream fpga and processor model

soc_hwsw stream proc instantiated as model references. The top model also includes Memory
Channel and Memory Controller blocks which model shared external memory between FPGA and
processor. These were earlier modeled using buffer block in the implementation model. To improve

5-33



5 Examples

simulation performance, FPGA algorithm is also modeled for Frame-based processing

soc_hwsw stream fpga frame and is included as model variant subsystem at the top level. You can
select the model to run in Frame-based or Sample-based processing by selecting from the mask of
FPGA subsystem.

Streaming Data from Hardware to Software

External Input/Qutput

Low Frequency Signal

FPGA

FPGA

Frame based processing

Memory

Processor

Testbench Output

[true p—»-
PR osin{¥dl] Ds1
fihe}—>-

DIP Switch
High Frequency Signal

dBursiDone |4 bursiDone2

|

5-34

Low Freq

q Freqlndicanur

qindicat

High Freq

Register Channel

Copyright 2019 The MathWorks, Inc.

Design to Meet Latency Requirement : Latency in the datapath from FPGA to processor comprises
of the latency through the FPGA logic and the time for data transfer from FPGA to processor through
memory channel. In this example, the FPGA clock is 10MHz and the latency is on the order of
nanoseconds. This is negligible in comparison with latency within the memory channel, which is on
the order of milliseconds. Therefore, let us focus on designing for latency for data transfer in the
following manner.

Begin with a few potential frame sizes and calculate Frame period for each frame size in Table -1.
Frame period is the time between two consecutive frames from FPGA to processor. For this example,
FPGA output sample time is 10e-6 as a valid data is output every 100 clock cycles from the FPGA.

FramePeriod = Framesize * FPGAQutput SampleT ime

Latency of the memory channel is due to time elapsed by samples in the queue of frame buffers and
FPGA FIFO. Let us size FPGA FIFO equivalent to one frame buffer. To stay within the maximum
latency requirement, calculate the number of frame buffers for each frame size as per:

(NumFrameBuf fers + 1) # FramePeriod <= MaxLatency

Maximum latency allowed for this example is 100 ms. Since the number of buffers account for
maximum latency requirement, for all the cases in Table -1, latency requirement is met. A minimum of
3 frame buffers is needed in external memory for data transfer. While one of the frame buffers is
written by FPGA, the other frame buffer is read by processor. Therefore, Case #8-10 from the table
below are rejected as they violate the minimum buffer requirement.



Streaming Data from Hardware to Software

# Frame Size Frame Number Meets or Violates
period of buffers requirements
(ms)
1 3 0.05 1599
2 100 1 99
3 300 8 11
4 1000 10 9
] 1600 16 5
5] 2000 20 4
7 2400 24 3
8 3000 20 <1 Violates min buffers req
9 18000 180 <] Violates min buffers reg
10 30000 300 <1 Violates min buffers reqg
Table -1

To visualize the latency, simulate the model and open Memory Channel block, go to Performance tab

and click on View performance plots . Select all the latency options under Plot Controls and click

Create Plot . As captured in Figure - 2, you will notice that the composite latency meets the < 100 ms

requirement.

5-35



5 Examples

[ Performance Plots for soc_hwsw_stream_top/Memary Channel - | x
Basffer |Latencies

0 1 2 3 4 5 5] 7 8 9 10
Simulation Time (ms) w404
I ooy Channal Weite Bulor Latency I Mooy Channel Resd Bulor Latency

[ Memary Channal Read Acknowledge Buffer Latency  ®  Instantaneous Total Latency

Cunrent Plot Indonmation Plot Contrals
Latencies: Buffer wete, mead, task exmecution complate: Latemcsey
(] Buller wille comgiele
(] Busber rond comgiele
Tio wpdiate the plat, sesct the cortiois on the nght and chok Create Pl ] Buier task exscution complete

Bawengersg window (4] sio (008595 &)

Pueraging window (5] auto

Hely [ Uposte ]
Figure - 2

Design to Meet Throughput Requirement : On average, the software tasks processing must
complete within a frame period, as otherwise, task will overrun leading to dropping of data and
violate the throughput requirement. i.e.

FramePeriod = MeanTaskDuration

There are various ways of obtaining mean tasks durations corresponding to frame sizes for your
algorithm, which are covered in “Task Execution” on page 5-58 Example. Mean task durations for
various frame sizes are captured in Table 2.

5-36



Streaming Data from Hardware to Software

# Frame Size Frame Mumber of  Mean Task Meets or Violates
period buffers Duration requirements
(ms) (ms)
1 5 0.05 1599 0.059 Violates throughput
2 100 1 59 1.06 Violates throughput
3 800 g 11 7.858
4 1000 10 9 9.61
3 1800 16 3 15.2
7] 2000 20 4 15.067
7 2400 24 3 22.812
g 8000 20 <1 76.56 Violates min buffers req
9 18000 180 <1 175.23 Violates min buffers req
10 30000 300 <1 285.52 Violates min buffers req
Table -2

To simulate the model with the parameters corresponding to rows (#2-#7) in the table use the
function set _hwsw_stream set parameters function with row # as an argument. Set the model
parameters for row # 2 as below:

soc_hwsw stream_set parameters(2); % row # 2

Since the Mean Task Duration of 1.06 ms is more than the Frame Period of 1.0 ms, the data is
dropped in the memory channel. Open Logic Analyzer and notice that signal icFIFODroppedCount is
increasing throughout the simulation as captured in Figure 3, indicating accumulating amount of
dropped data.

5-37



5 Examples

58 soc_hwsw_stream_top - Logic Analyzer

LOGIC ANALYZER

L =

Add  Add
Divider Group

TRIGGER WAVE LY L 2]

& L B wx [Q)Q 2 UMM |
4 @ Add  Previous _ Next C} Seopng Pause S0 Slop  Fing  Seftings
Cursor Transiion Transition Optlions Forward -
EDIT CURSORS ZOOM & PAN SIMULATE FIND | GLOBAL a

Memory Channellog/Writer/<icFIFODroppedCount> 7846 7847

5-38

48860 ms

Cursor 1| 49042.73 ms

~ " Figure - 3

Since data is dropped during transfer from FPGA to processor through memory, this is reflected as a
drop in throughput. Open Memory controller block, go to Performance tab and click on Plot data
throughput button under Performance tab to see the memory throughput plot as in figure 4. Note that
the throughput is less than the required 0.4 MBps. Since the FPGA output data sample time is 10e-6
and each sample is 4 bytes wide, the required streaming throughput for the system is 4 bytes/10e-6 =
400 KBps.



Streaming Data from Hardware to Software

(4 Performance Plots for soc_hwsw_stream_top/Memary Controller - O Y
Bandwidth

12
Simulation time (us) %107
(I 1aster 1 T Master 2|
Current Plot Information Bandwidth Plot Controls
Masters to plot: 1,2 Bandwidth Bursts Latencies
Sampling interval (s): auto (1 5). Masters to plet
To update the plot, select the contrals on the right and click Create Flot. [7] Master 1
] Master 2
Samgling interval {sp  |auio
Halp [ Updata |

Figure - 4

Design to Meet Drop Samples Requirement : Since the task durations can vary for many reasons
like different code execution paths and variation in OS switching time, it is possible that data is
dropped in the memory channel. Specify the mean task execution duration and statistical distribution
for task durations in the mask of Task Manager block. Size the FIFO equivalent to one frame buffer.
Set the FIFO burst size to 16 Bytes and calculate the FIFO depth:

FIFOgepth = FrameSize/ FIFOBurstSize

Now, simulate the model for 100 sec (10e6 samples at 10e-6 samples per second) for cases # 3-7.
Open the Logic analyzer and note the number of samples dropped on signal icFIFODroppedCount.

soc_hwsw stream set parameters(3); % set the model parameters for #3

Open Simulation Data Inspector and add signals from memory channel as shown in Figure 5 below.
Note that as buffers usage (signal buffAvail) increase to the maximum 11, the FIFO usage (signal
isFIFOEntries ) begin to increase. When FIFO is completely used, the samples get dropped (signal
isFIFODroppedCount )

5-39



5 Examples

" Simulation Data Inspector - untitled* = B
? BE o - . A
@ NBE|H- |-k JIAR
B <icFIFODroppedCount=
@D .|
I
10
5 +
¥ o e
] 05 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80
1. = <icFIFOEntries=

0 0.5 10 15 2.0 258 3.0 35 4.0 4.5 5.0 55 6.0 65 7.0 Fa 8.0

W =hufAvail=

The results of simulation for all the cases #3-7 and resultant sample dropped per 10000 are tabulated
in Table 3.

5-40



Streaming Data from Hardware to Software

# Frame Frame Mumber Mean Task Avg Samples Meets or Violates
Size period of buffers Duration dropped per requirements
(ms) [ms) 10000
1 5 0.05 1595 0.059 Violates throughput
2 100 1 59 1.06 Violates throughput
3 200 8 11 7.858 172.6 Violates drop samples
4 1000 10 9 9.61 0 Meets all requirements
5 1600 16 5 15.3 1 Meets all requirements
B 2000 20 4 19.067 2.25 Violates drop samples
7 2400 24 3 22.812 3.9 Violates drop samples
8 2000 20 <1 76.56 Violates min buffers req
9 12000 180 <1 175.23 Violates min buffers reg
10 30000 300 <1 285.52 Violates min buffers req
Table-3

The highlighted entries (rows #4 and #5) are valid design choices since they meet throughput,
latency and drop samples requirement.

Implement and Run on Hardware

Following products are required for this section:

* HDL Coder™

* Embedded Coder®

* SoC Blockset Support Package for Xilinx Devices, or
* SoC Blockset Support Package for Intel Devices

For more information about support packages, see “SoC Blockset Supported Hardware”

To implement the model on a supported SoC board use the SoC Builder tool. Open the mask of 'FPGA'
subsystem and select model variant to 'Sample based processing'. By default, the model will be
implemented on Xilinx® Zynq® ZC706 evaluation kit as it is configured with that board. To open
SoC Builder click, 'Configure, Build, & Deploy' button in the toolstrip and follow these steps:

* Select 'Build Model' on 'Setup' screen. Click 'Next'.

* Click 'View/Edit Memory Map' to view the memory map on 'Review Memory Map' screen. Click
'Next'.

* Specify project folder on 'Select Project Folder' screen. Click 'Next'.

* Select 'Build, load and run' on 'Select Build Action' screen. Click 'Next'.

* Click 'Validate' to check the compatibility of model for implementation on 'Validate Model' screen.
Click 'Next'.

* Click 'Build' to begin building of the model on 'Build Model' screen. An external shell will open
when FPGA synthesis begins. Click 'Next'.

* Click 'Test Connection' on 'Connect Hardware' screen to test the connectivity of host computer
with SoC board. Click 'Next' to go to 'Run Application' screen.

5-41



5 Examples

The FPGA synthesis may take more than 30 minutes to complete. To save time, you may want to use
the provided pre-generated bitstream by following these steps:

* Close the external shell to terminate synthesis.
» Copy pre-generated bitstream to your project folder by running the command below and then,
* Click 'Load and Run' button to load pre-generated bitstream and run the model on SoC board

copyfile(fullfile(matlabroot, 'toolbox"', 'soc', 'socexamples', 'bitstreams', 'soc hwsw stream top-zc7!

While the application is running on hardware, toggle the DIP switch on your board to change the test
data from 'low' to 'high' frequency and notice the blinking of corresponding LED on the board. You
can also read the samples dropped count in the model running on external mode. Thus, you verify
that your implementation from SoC Blockset model matches the simulation and meets the
requirements.

Implementation on other boards: To implement the model on a supported board other than
Xilinx® Zynq® ZC706 evaluation kit board, you must first configure the model to the supported
board and set the example parameters as below.

* On the Hardware tab, click Hardware Settings to open the Configuration Parameters window.

* Inthe Hardware Implementation tab, select your board from Hardware board drop-down list
on both top and processor model.

* Navigate to Target hardware resources > FPGA design (top level) tab and enable Include
MATLAB as AXI Master IP for host-based interaction and set IP core clock frequency
(MHz) to 10 MHz.

* Navigate to Target hardware resources > FPGA design (debug) tab and enable Include AXI
Interconnect monitor.

Next, open SoC Builder and follow the steps as previously stated for Xilinx® Zyng® ZC706 above.
Modify the copyfile command to match the bitstream corresponding to your board. Available pre-
generated bitstreams are:

* 'soc_hwsw stream top-zc706.bit'

* 'soc_hwsw stream top-zedboard.bit'
* 'soc_hwsw stream top-zcul02.bit'

* 'soc_hwsw stream top-c5soc.sof'

* 'soc_hwsw stream top-alOsoc.sof'

In summary, this example showed you a systematic approach to design the datapath between
hardware logic and embedded processor using SoC Blockset. You chose design parameters of frame
size, number of frame buffers and FIFO size to meet the system performance requirements of
throughput, latency and drop samples. By simulating and visualizing the effects of these parameters
on the complete model containing hardware logic, processor algorithms, external memory and
processor task durations, you uncovered issues like loss of throughput, latency and dropping of
samples before implementing on hardware. This workflow ensures that the design works on hardware
before implementation and avoids long design-implementation iterations.

5-42



Analyze Memory Bandwidth Using Traffic Generators

Analyze Memory Bandwidth Using Traffic Generators

Camera

Write | Read
II“ Naster “[ Channel Interconnect Mosiar -

This example demonstrates how to analyze memory bandwidth for an SoC application. In memory-
intensive hardware designs, you may have multiple masters accessing a common DDR memory. In
such cases, it is important to analyze the dynamic requirement of all memory masters to guide
algorithm design and hardware board requirement for deployment. You can simulate the memory
traffic using Memory traffic generators, analyze the bandwidth usage and verify it on the hardware.

Supported hardware platforms

+ Xilinx® Zyng® ZC706 evaluation kit
* Xilinx® Kintex® 7 KC705 development board

Design Task

Consider an application performing HD video processing in FPGA on real-time input and output. This
application requires four memory consumers vying for DDR access simultaneously. Memory master 1
writes incoming video frames to memory and Memory master 4 reads video frames out of memory
and connect to output display. Memory master 2 reads the data from memory for processing in FPGA
and Memory master 3 writes the data back to memory.

Memory Controller

111

Display

1

[ FPGA Algorithm ]

Each master operates on HD video with following characteristics:

* Frame size: 1920x1080p

+ Pixel size: 2 Bytes (YCbCr format)

* Frame period: 1/60 = 16.67ms (for 60 FPS)
* Frame data: 1920x1080x2 = 4.1472MB

Each master requires following minimum memory bandwidth to get the frame rate of 60 FPS.

5-43



5 Examples

*  Memory bandwidth: Frame data/ Frame period = 4.1472e6/16.67e-3 = 248.8MBps

Assume the memory controller characteristics are as follows:

* Clock frequency: 200 MHz
* Data width: 32 bits
* Burst transaction length: 128

Design Using SoC Blockset

Create a model using Memory Controller and Memory Traffic Generator blocks to model four memory
masters.

Memory Controller: Set the memory controller parameters in Configuration Parameters >
Hardware Implementation > Target Hardware Resources. Under FPGA Design (mem
Controllers) tab, set the clock frequency to 200 MHz and data width to 32. Under FPGA Design
(debug) tab, select Include AXI interconnect monitor.

Analyze Memory Bandwidth for SoC Design Using Traffic Generators

bemory Controller

5-44

i ;P ¥ Pood
FROM CAMERA (WRITING VIDEO FRAME) TC DISPLAY (READING VIDEQ FRAME)
r r
Memory Traffic Generatorl Memory Traffic Generatord
FPGAALGORITHM (READING|VIDES FRAME) FPGAALGORITHM (WRITING VIDEQ FRAME)
y r

Memory Traffic Genarator2 Memory Traffic Generatord

Copyright 2019 The MathWaorks, Inc.

Memory Traffic Generators 1 & 4: Memory traffic characteristics for Master 1 and 4 are same as
they represent streaming of video frames to and from memory. Set the memory traffic characteristics
for masters 1 and 4 as follows:



Analyze Memory Bandwidth Using Traffic Generators

* Burst size (in bytes): Burst transaction length * (Data width/8) = 128* 32/8 = 512

* Total burst requests: 4 frames data for simulation = 4 * Traffic data/Burst size = 4*8100 =
32400

Burst inter access time: Frame period/Number of Burst requests = 16.67e-3/8100 = 20.58e-7 sec. As
a constant data traffic, the data is continuously received at a constant rate. Set the burst times as
below:

* First burst time = 20.58e-7
* Random time between the bursts = [20.58e-7 20.58e-7]

Update the Memory Traffic Generatorl and Memory Traffic Generator4 block mask with above
values. Set the Request type for Memory Traffic Generatorl with writer and Memory Traffic
Generator4 with reader. Clear the Wait for burst done option in both the block masks as these
masters represent the masters with continuous traffic, such as HDMI Camera and display.

Memory Traffic Generators 2 & 3: Memory Traffic Generator2 represent reader for FPGA
Algorithm and Memory Traffic Generator3 represent writer from FPGA Algorithm. Set the memory
traffic characteristics for masters 2 and 3 as follows:

* Burst size (in bytes): Burst transaction length * (Data width/8) = 128* 32/8 = 512

+ Total burst requests: 4 * Traffic data/Burst size = 4*8100 = 32400(4 frames data for simulation)

Burst inter access time: (Burst Length + 10)/Clock period = 6.9e-7(0.69us). To allow some
randomness in burst times for read and write request of data, due to variation in demands of
algorithm, set the burst times as below:

* First burst time: 7.2e-7
* Random time between the bursts: [7.2e-7 7.4e-7]

Simulate

Run the model. After completion of simulation, open the Memory Controller block and click on View
performance plots under Performance tab. Select all the masters under Bandwidth tab and click
Create Plot. You can notice that all masters roughly achieved a bandwidth of 190 MBps and did not
meet the required 248 MBps. It is also observed by the warnings in the diagnostic viewer.

5-45



5 Examples

|4 Perforrmance Plots for soc_memony_traffic_generator/Memaory Contraller — O x

5-46

MB/s

Bandwidth

800 T T T T T

700 B

600 -

00

400

300

200

100

0 0.5 1 1.5 2 25 3
Simulation time (us) x 104

|-Master‘l I aster 2 [ Master 3 |:|Master4|

To meet the required bandwidth, modify the data width of controller from 32 to 64 in configuration
parameter settings under Target Hardware Resources. This requires changing the Memory Traffic
Generator settings accordingly as follows:

* Burst size (in bytes): Burst transaction length * (Data width/8) = 128* 64/8 = 1024

+ Total burst requests: 4 * Traffic data/Burst size = 4*4050 = 16200(4 frames of data for
simulation)

Burst inter access time for Memory Traffic Generators 1 & 4: Frame Period/Number of Burst requests
= 16.67e-3/4050 = 41.16e-7 sec. Set the burst times as below:

* First burst time: 41.16e-7
* Random time between the bursts: [41.16e-7 41.16e-7]

There is no change in First burst time and Random time between the bursts for Memory Traffic
Generators 2 and 3, since they are determined based on algorithm requirements.

Simulate the model and open the Bandwidth plot from Memory Controller as mentioned earlier.
Notice that Memory bandwidth achieved by Memory Traffic Generator 1 and 4 is 248 MBps. The
memory bandwidth from Generator 2 and 3 is around 500 MBps. This meets the design requirement
as all the masters are able to meet the real-time requirement of 248 MHz. Observe that there are no
warnings on the diagnostic viewer as burst requests are not dropped.



Analyze Memory Bandwidth Using Traffic Generators

[4\| Perfarmance Plots for soc_memory_traffic_generator/Memary Controller - O hod

MB/s

Bandwidth

1600 T T T T T

1400

1200

1000

800

600

400

200

0 0.5 1 1.5 2 25 3
Simulation time (us) x10%

| Vaster 1 I Master 2 [ Master 3 [T Master 4|

Implement and Run on Hardware
“SoC Blockset Support Package for Xilinx Devices” is required for this section.

To implement the model on a supported FPGA board, use the SoC Builder application. By default, the
model will be implemented on Xilinx® Zynq® ZC706 evaluation kit as it is configured with that
board.

AXI Traffic Generator(ATG), the hardware IP Core for Memory Traffic Generator block does not
support random burst inter access times and it differentiates Reader and Writer masters in
arbitration policy unlike the Memory Traffic Generator block for simulation. Therefore, before
implementing on hardware, modify the Memory block settings as follows:

* Make all the Memory Traffic Generators as 'Writers'

* For Memory Traffic Generator 2 and 3, set [7.2e-7 7.2 e-7] for Random time between burst to
make it fixed inter burst time of 7.2e-7

Open SoC Builder from the Tools menu and follow these steps:

¢ Select Build Model on Setup screen. Click Next.

* Click View/Edit Memory Map to view the memory map on Review Memory Map screen. Click
Next.

* Specify project folder on Select Project Folder screen. Click Next.

5-47



5 Examples

5-48

* Select Build, load and run on Select Build Action screen. Click Next.

* Click Validate to check the compatibility of model for implementation on Validate Model screen.
Click Next.

* Click Build to begin building of the model on Build Model screen. An external shell will open
when FPGA synthesis begins. Click Next to Load Bitstream screen.

The FPGA synthesis may take more than 30 minutes to complete. To save time, you may want to use
the provided pre-generated bitstream by following steps:

* Close the external shell to terminate synthesis.

* Copy the pre-generated bitstream to your project folder and rename by running the below
command.

>> copyfile(fullfile(matlabroot, 'toolbox', 'soc', 'socexamples', 'bitstreams', 'soc memory traffic g
* Click Load button to load pre-generated bitstream.

To run this example, copy the example test bench to your project folder.

copyfile(fullfile(matlabroot, 'toolbox"', 'soc', 'socexamples', 'soc memory traffic generator aximaste

The testbench configures the generated hardware ATG IP cores for Memory Traffic Generators. To
run on hardware, increase the number of burst requests by 100 times since it uses MATLAB® as AXI
Master IP to get the samples back to MATLAB®, which involves substantial delay in accessing
hardware. Load soc_ memory traffic generator zc706 aximaster.mat file and increase the number of
burst requests for all the masters in ATG configuration to 100 times. Save the .mat file requests in
ATG configuration.

Enter the following command to run the test bench soc memory traffic generator aximaster.
soc_memory traffic generator aximaster

After running the test bench, the following output is generated showing the memory traffic. All
masters passing the bandwidth requirements.



Analyze Memory Bandwidth Using Traffic Generators

|4 Performance Plots for soc_memory_traffic_generator_aximaster.m — | >

Bandwidth

1E'DD T T T T

1600

1400 [

1200

1000

MEB/s

400

200

0 0.5 1 1.5 2 2.5
Time (sec)

| 2ster 1 T Master 2 [ Master 3 [ Master 4 |

Implementation on Xilinx® Kintex® 7 KC705 development board: To implement the model on
KC705 development board, you must first configure the model to Xilinx® Kintex® 7 KC705
development board and set the following example parameters. Open Model Configuration
Parameters, navigate to Hardware Implementation tab and perform the following:

* Select Xilinx® Kintex® 7 KC705 development board from the drop-down list under
Hardware board.

* Navigate to Target hardware resources > FPGA design (top level) tab and enable Include
MATLAB as AXI Master IP for host-based interaction.

* Navigate to Target hardware resources > FPGA design (mem controllers) tab and set
Controller data width (bits) to 64.

* Navigate to Target hardware resources > FPGA design (debug) tab and enable Include AXI
interconnect monitor.

Next, open SoC Builder and follow the steps as previously stated for Xilinx® Zyng® ZC706 above.
Modify the copyfile command to match Kintex® 7 KC705 development board bitstream as below.

>> copyfile(fullfile(matlabroot, 'toolbox', 'soc', 'socexamples', 'bitstreams','soc_memory traffic g

5-49



5 Examples

In summary, you simulated the memory traffic for a prospective design before designing the
algorithms. You analyzed memory bandwidth and modified memory parameters to meet the design
requirement. You verified the results on hardware.

5-50



Record I/0O Data from SoC Device

Record I/O Data from SoC Device

This example shows you how to record real-world data from hardware for use in simulation.
Supported hardware platforms:

* Xilinx® Zyng® ZC706 evaluation kit

* Xilinx Zynq UltraScale™+ MPSoC ZCU102 Evaluation Kit

* ZedBoard™ Zyng-7000 Development Board

* Altera® Cyclone® V SoC development kit

» Altera Arria® 10 SoC development kit

In many situations you may want to verify your algorithm against real-world data. This example, using
the Streaming Data from Hardware to Software model, shows how to record signals from the AXI4

interface on a SoC device. This workflow allows you to focus on the processor side of the algorithm by
substituting a pre-recorded data stream in place of the Simulink® FPGA design.

We recommend completing “Streaming Data from Hardware to Software” on page 5-32 example.

Streaming Data from Hardware to Software

External Input/Output

Low Frequency Signal

FPGA

Memory

Processor

Testbench Output

Processor

réBurstDone [4— burstDone2

-—b-|rue a
4’\:——b DSIn Ds1
-
FPGA 5
DIF Switch 3
High Frequency Signal Frame hased processing :
» »lwDeta g

LED1 W wrCtrlin
8]

LEDZ rCeriDut

Low Freq

o ewFreqindicator

" [FFFF

qindicator  HighFreqindicatar

Hiigh Freq

Register Channel

Copyright 2019 The MathWorks, Inc

Record Data from FPGA

In this section, you will record data generated by the FPGA subsystem in the Streaming Data from
Hardware to Software model. In this model, the FPGA subsystem generates a sinusoidal signal with
frequency 1kHz or 10kHz, controlled via a DIP switch (DS1). The FPGA algorithm filters the signal
and sends it to the processor through AXI4 Stream Memory Channel.

5-51



5 Examples

Following products are required for this section:

* SoC Blockset Support Package for Xilinx® Devices
Follow the steps below to record data from FPGA:

1. Create a hardware communication object executing the following on the MATLAB® command
prompt.

hw = socHardwareBoard('Xilinx Zynq ZC706 evaluation kit', 'hostname','10.10.10.15', 'username', ' ro

Enter the appropriate hardware board name, IP address and the user credentials in the command
above. The hardware object hw, is a communication gateway that provides control commands and I/O
exchange.

2. Open Streaming Data from Hardware to Software model. Load the provided pre-generated FPGA
bitstream for this model to hardware.

socLoadExampleBitstream(hw, 'soc hwsw stream top')

3. Create a data recorder for your hardware board.

dr = soc.recorder(hw);

4. Create an AXI Stream Read input source object and configure the source properties.
src = soc.iosource(hw, 'AXI Stream Read');

src.devName = 'mwfpga algorithm wrapper ip0:s2mmO';

samplingFrequency = 1le5;
src.dataTypeStr = 'uint32';

5-52



Record I/0O Data from SoC Device

src.SamplesPerFrame = 1000;
src.SampleTime = src.SamplesPerFrame/samplingFrequency;

The samplingFrequency represents the sine wave sampling rate in the Streaming Data from
Hardware to Software model.

5. Add the AXI Stream Read source to the data recording session.
addSource(dr,src, 'AXI4 stream interface')
6. Initialize the I/O sources on the hardware board for recording.
setup(dr)
7. Use the record function to record 10 seconds of data.
record(dr, 10)
while isRecording(dr)

pause (0.1);

end

During the recording, toggle the DIP switch (DS1) to change the frequency of signal generated by the
FPGA.

8. Save the recorded data to a file:
save(dr, 'sine wave data')
Record RF Signals

In this section, you will capture RF signals from an AD - FMCOMMS2/3/4 RF card connected to the
FPGA. The data will be streamed from the RF card to the processor using AXI4 stream interface.

Following products are required for this section:
* SoC Blockset Support Package for Xilinx® Devices
Supported hardware platforms for this section are:

* Xilinx® Zyng® ZC706 evaluation kit
» ZedBoard™ Zyng-7000 Development Board

To configure RF card refer to “Manual Host-Radio Hardware Setup” (Communications Toolbox
Support Package for Xilinx Zyng-Based Radio)

5-53



5 Examples

RF Capture

Mam Controller

wrBurstDone [ 4— burstDoned

4
—

rdBurstReq —M burstReq?

rdEvent

rdBurstDone [— burstDona2

rdDicns

Processor

ARM

P dataTask

p{data

In-Phass

Testbench Output

|_Data D
[aoes |

RF Ir0 FPGA Memory
E
-]
1
FPGA 3
g
= chData p|uData B
‘_'J-/ | dataln ¥
= .
chCirlOut (e Cirlin
databropped_LED
chCirln wrCirlOut
LED1 4———
LED

Mem Channel

DataOut

Copyright 2019 The MathWorks, Inc.

1. Open RF Capture model. Load the provided pre-generated FPGA bitstream for this model to
hardware.

socLoadExampleBitstream(hw, 'soc_rfcapture")

2. Configure radio card.

rf

rf.
rf.
rf.
rf.
rf.
rf.

= rfcard(hw);

CenterFrequency = 1090e6;
GainSource = 'AGC Fast Attack';
BasebandSampleRate = 4e6;
ShowAdvancedProperties = true;
ShowInternalProperties = true;
BISTToneMode = 'Tone Inject Rx'

rf();

3. Setup data recorder.

dr = soc.recorder(hw);

src = soc.iosource(hw, 'AXI Stream Read');
src.devName = 'mwfpga data capture ipQ:s2mmO';
src.dataTypeStr = 'uint32';
src.SamplesPerFrame = 4000;

src.SampleTime =

’

addSource(dr,src, 'AXI4 stream interface');

4. Record radio signals.

setup(dr)
system(hw, 'devmem 0x40010160 32 1');
record(dr,1)

while isRecording(dr)

5-54

pause (0.1);

src.SamplesPerFrame/rf.BasebandSampleRate;




Record I/0 Data from SoC Device

end
save(dr, 'zynqg rf data')

5. To playback the recorded RF data, open RF Playback model. Enter the dataset name and the
source name on the IO Data Source block and simulate the model.

4| Vectar Scope - | k4
File Toels Wiew Simuletion Help »
@- 908 - - KB Ffi4-

¥ Trace Selection

ETSOM——

rsof Measurements n X

Jeady Frame bazed Oftzel=0 T=0345

A pre-recorded dataset file zynq_rf data.tgz is available at matlab\toolbox\soc\socexamples.

See Also

“Simulate with I/O Data Recorded from SoC Device” on page 5-56

5-35



5 Examples

Simulate with 1/0 Data Recorded from SoC Device

This example shows you how to use recorded real-world data in simulation.
Supported hardware platforms:

* Xilinx® Zyng® ZC706 evaluation kit

* Xilinx Zynq UltraScale™+ MPSoC ZCU102 Evaluation Kit
* Altera® Cyclone® V SoC development kit

* Altera Arria® 10 SoC development kit

In many situations you may want to verify your algorithm against real-world data. This example
shows how to use the recorded data signal in a simulation of the generated processor system model
of the complete SoC application.

We recommend completing “Streaming Data from Hardware to Software” on page 5-32 example.
Use Recorded Data in Simulation

In this section, you will simulate the processor subsystem of the SoC application model with recorded
data as input. The processor subsystem of the SoC application uses AXI4 protocol to stream data from
external memory and determine if the signal contained in the data is either high or low frequency. An
IO Data Source block replaces the external memory and the FPGA subsystem of the model with
playback of the AXI4 stream data. You will use data recorded in “Record I/O Data from SoC Device”
on page 5-51 example.

Signal Detection

Testbench Output

RT
Processor Algorithm ]
S : J 21 L0
From file Im m
event | dateRead TaskEvent DrataOut
Viactor
10:01 - MEg | Ditaln LowFreq »-—] Scope
1010 Low Freq Detected Signal (LEDs)
n . —
done done HighFreg High Freq =—] e High Frac

5-56

zyng_sine_data.tgz
10 Data Source

Copyright 2019 The MathWorks, Inc.

1. Open Signal Detection model.
2. Open IO Data Source block mask.

3. Click Browse... and select the matlab\toolbox\soc\socexamples\zynq_sine_data.tgz file
containing recorded data.



Simulate with I/O Data Recorded from SoC Device

4. Click Select... and choose the data source within the data file to playback. Click OK to close the
block mask dialog.

5. Run the Simulink® model and open Vector Scope to observe the recorded data.

6. To access the recorded data in MATLAB®, use socFileReader.

h = socFileReader('zynq sine data.tgz');
data = getData(h, 'AXI4 stream interface');

The returned data is a time series object of 'uint32'. To plot the data in MATLAB convert 'uint32' to
'int32'.

plot(data.Time, typecast(data.Data, 'int32'));

See Also

“Record I/O Data from SoC Device” on page 5-51

5-57



5 Examples

Task Execution

5-58

This example shows how to simulate task execution and how to generate code and run it on an SoC
hardware board.

Application development often includes simulating an algorithm to ensure the correct behavior. Such
simulations usually ignore the real-time aspects of an embedded system environment. This may allow
certain timing problems to remain undiscovered until the application runs on hardware.

The timing problems often lead to incorrect application behavior. SoC Blockset helps you detect these
problems in simulation rather than on hardware. This can help you avoid costly debugging on
hardware.

Timing problems are more likely to occur as applications become more complex. For example, rate
overruns and undesired rate preemption are more frequent in applications with multiple tasks due to
resource constraints and task dependencies. Simulating multitasking applications with SoC Blockset
will help you in detecting these problems early.

In this example, task execution is simulated using SoC Blockset. You will learn about different
techniques for simulating task duration and when to use them. You will also learn how to verify the
timing specifications on hardware.

Supported hardware platforms:

* Xilinx® Zyng® ZC706 evaluation kit

+ Xilinx Zynq UltraScale™ + MPSoC ZCU102 Evaluation Kit

» ZedBoard™ Zynq-7000 Development Board

* Altera® Cyclone® V SoC development kit

» Altera Arria® 10 SoC development kit

The models used in this example are set for Xilinx Zynq ZC706 evaluation kit board. To use a

different hardware board, select one of the hardware boards listed in the Hardware Board on the
System on Chip tab. Do the same for the top model and the referenced model.



Task Execution

Task Execution

=
| dataFead TaskEvent g:_ - dataReadTask ----- - | dataTask
r L \ DataCiut | 1
Viewer
2 =4 Diataln
LowFreqindicator ———=——]
LF
dione fo done

HighFreqindicator ———»——]

3 = SamplesDroppedin
= HF

Test Data Processor Algorithm

Copyrght 2019 The MathWorks, Inc.

Introduction

SoC Blockset simulates the execution of software tasks as they would execute on an SoC processor.
The simulation honors the parameters of the task, such as period, priority and processor core. SoC
Blockset simulates task preemption, task overruns, and concurrent task execution.

The following diagram illustrates the above-mentioned task execution simulation aspects. In the first
two subplots, you can observe that Taskl executes every 0.1 s and, since they both share Core 0,
Task1 preempts Task?2 that executes every 0.2 s. In the third subplot, you can observe that Core 0 still
has some idle time. The last two subplots show Task3 running every 0.3 s on Core 1.

5-59



5 Examples

Q

Inspect

Filter Signals
NAME

4

Compare

« Run 1: test1
Task1_drop
Task2_drop
Task3_drop
Task1
Task2
Task3

« @ B ®

Core: 0

=
]

Archive

@ & P

Properties

4\ simulation Data Inspector - untitled*

— a X
W Task
Running
Preempted
Vaiting
0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45
W Task2
Running
Preempted
Waiting
0.05 0.10 0.15 0.20 025 0.30 0.35 0.40 0.45
W Core: 0
2 y —\ R
] Task2 K J Task2 [ 1. j Task2 ] 1 Task2 K| X 1 Tash
0
0.05 0.10 0.15 0.20 025 0.30 0.35 0.40 0.45
W Task2
Running
Preempted
Waiting
0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45
Core: 1
1
Task3 | Task3
0
0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45

To learn more about simulating task execution, see “What is Task Execution?” on page 1-2

The Task Manager block allows you to configure execution of the tasks in your model. In the block
dialog, you define how many tasks you need in your system using Add and Delete buttons. On the
Main tab of the dialog, you set the main task properties, while on the Simulation tab you set the
simulation task properties.

The following figure illustrates the Main tab of the Task Manager block.

5-60




Task Execution

I:ﬁ_l Block Paramelers: Task Manager *
Task Manager (mask)

Execute ane or more tasks with task priorities and core affinities, allowing you to simulate and analyze
task preemptions and overruns.

Set Type to 'Event-driven' to initiate tasks via an event port.
Set Type to Timer-driven' to initiate tasks with a periodic timer.

In the Simulation tab, select 'Play recorded task execution sequence’ to replay a timed sequence of task
starts and stops from a recorded file, Otherwise, task duration in simulation is determined via dialog,
input port, or summary statistics from a recorded file, and the task start times are determined by settings
in the Main tab.

[+] Enable task simulation

Task simulation
dataReadTask properties

dataReadTask
Main  Simulation
Name: |dataReadTask |
Type: Event-driven -
Core: | Timer-driven \
Priority: 50 |
Add

[_| Drop tasks that overrun

Cancel Help Apply

A task has a name so that it can be identified in the model and the various associated plots. Port
labels on the Task Manager block use the task names for easy identification.

A task can be of two types. An event-driven task executes when triggered by an event. An event line
from an IO data source block connected to the Task Manager block triggers the task. A timer-driven
task executes with a defined period as defined in the Main tab of the Task Manager.

You define the priority of event-driven tasks in the Main tab of the Task Manager. Timer-driven task
priority is assigned automatically.

In the Task Manager dialog you may also set the processor core on which to execute a task so that,
if your hardware board has multiple cores, you may set the tasks to execute concurrently.

The Task Manager block also allows you to configure how task overruns are handled. For example,

you may decide to drop an instance of a task if the previous task instance has not started or
completed. Or, you may decide to try to catch up with the task schedule despite overruns.

5-61



5 Examples

To simulate real-time task effects, such as preemption and overruns, SoC Blockset requires you to
provide the duration of each task. The duration is defined as the time elapsed between the task start
and the task end. Ideally, you will measure the task duration on your hardware board. If that is not
possible, look up the task duration in the data sheets provided by the task algorithm developers. As a
last resort, you should set the duration relative to the task period or the shortest recurrence interval
for aperiodic tasks.

SoC Blockset has several choices for setting the task duration. As the task duration is applied only to
simulation, these choices are found in the Simulation tab of the Task Manager dialog.

The following figure illustrates the Simulation tab of the Task Manager dialog.

|:§_| Block Paramelers: Task Manager e
Task Manager (mask)

Execute ane or more tasks with task priorities and core affinities, allawing you to simulate and analyze
task preemptions and overruns.

Set Type to 'Event-driven' to initizte tasks via an event port.
Set Type to Timer-driven' to initiate tasks with a periodic timer.

In the Simulation tab, select 'Play recorded task execution sequence’ to replay a timed sequence of task
starts and stops from a recordead file. Otherwise, task duration in simulation is determined via dialog,
input port, or summary statistics from a recorded file, and the task start times are determined by settings
in the Main tab.

Enable task simulation

Task simulation
dataReadTask properties

dataReadTask

Main  Simulation

[ Play recorded task execution sequence

Specify task duration via: |Dialog
Task duration settings Input port
Specify task duration timd Recorded task execution statistics
cambination of multiple noffal dsEFBOTHENS.

Add Percent Mean sD Min Max
1 100 0.0055 0.0001 0.00925  0.00975
Add

Cancel Help Apply

The most commonly used options are:

+ Dialog - Allows you to specify task duration via a normal distribution, or a combination of multiple
normal distributions, using the mean and the standard deviation parameters.

5-62



Task Execution

* Input port - Allows you to specify task duration on an instance basis. For example, you may
create a model that calculates task duration and connect it to the Task Manager input port.

The following flowchart will guide you in selecting the most appropriate option.

5-63



5 Examples

Y

Start
High
tte My algorithm -
has...
Estimate parameters of
distribution
Only one code path
Yes
Enter distribution
parameters via dialog
No
Create duration model
Multiple code paths;
can predict which
path is taken ves
Connect duration model
toinput port
No
Dialog
Estimate parameters of
] l each distribution of a
"-“ Indefinite # of ::c::de A composite distribution
K=l paths, task duration » *
c distribution is Yes
8 repeatable Enter parameters of each
distribution via dialog
No
Input Port
Indefinite Create model for each
ndefinite distribution and combine
of code paths; task ) them
duration varies, but can be »
seen as combo of finite # - +
of distributions Connect duration model
toinput port
No
Input Port
Create duration data
source using reference
N data
Connect duration data

L A




Task Execution

If the duration times for your task have different distributions and causes, select the most fitting
options using the flowchart as general guidance.

You can configure additional simulation and execution parameters for SoC Blockset in the model
configuration dialog. Task profiling, in simulation and on processor, allows you to profile task
execution, stream results to Data Inspector and save them into a file.

You can also set the kernel latency value to affect task execution in simulation. This value varies a lot
but is typically much smaller than task duration. Therefore, we recommend you leave the value set to
0 s unless you can deterministically find the appropriate value for your hardware board.

The following figure shows SoC parameters related to task execution in the model configuration
parameters dialog. Note that the Task profiling on processor panel shows only if you install all
required products and hardware support packages.

& Configuration Parameters: soc_task execution/Configurationl (Active) - O b
Salver Hardware board: | Xllinx Zyng ZCT06 evaluation kit -

Data ImportExport
Math and Data Types

Code Generation system target file: erltlc

i « AR o ke - i i ARM Corle -

» Diagnostics Device vendor: ARM Compalible Device type: ARM Corlex

Hardware Implementation * Device details

Model Referencing

Simulation Target Hardware board settings
* Code Genearation
» Coverage * Task profiling in simulation
*» HOL Code Generation I¥] Show in SDI

+| Saveto file Owverwrite file

¥ Task profiling on processor

[+] Show in SDI

[#] Save to file ] overwrite file

¥ Operating system/schadular

Kemel latency: [0

* Task and memaory simulation

* Target hardware resources

0K Cancel Help Apply

5-65



5 Examples

5-66

The remaining steps of this example will illustrate some of the options shown in the above flowchart.
Simulating an Algorithm with Single Code Path

This case requires you to simulate a DSP algorithm that processes a frame of data. The following
product is required for that:

* DSP System Toolbox
If you do not have this product, proceed to the next case after reviewing the description of this case.

In this case, you will learn how to model the task duration when the task algorithm has a single code
path.

Assume that you are tasked with developing an application that processes RF (radio frequency) data
on an SoC board. After being preprocessed in the FPGA core, the data is streamed to the processor
core using the AXI14 protocol. The algorithm running on the processor core should determine whether
the data contains a high-frequency or a low-frequency signal. To that end, a low-pass and a high-pass
filter are applied to the data. The resulting signals are then compared to a selected threshold. Based
on this description, this task has a single code path, with no major code branches. The source code
for the task function might have the following form.

double dataReadTask(double in[])
{

/* Frame size is always 1000 */

int signalType; /* 0 - LP, 1 - HP */

double outl[1000], out2[1000];

filterLP(in, outl, 1000);

filterHP(in, out2, 1000);

signalType = thresholding(outl, out2, 1000);
}

1. Open the model. Note the Test Data subsystem. The RF Data Source block in the subsystem
represents the external memory and the FPGA core. The RF Data Source block has two output
ports, Stream Data and event. They output the RF data and a notification when new data frame is
available, respectively.

2. Note that the RF Data Source block generates frames of 1000 samples every 0.01 s. The frames
are samples of a 1 kHz sine waveform.

3. Click the Task Manager block. Observe that it sets an event-driven task dataReadTask. The task
is triggered by the arrival of a new data frame.

4, Click the Simulation tab in the Task Manager dialog to define the task duration for simulation.

Since the algorithm consists of two filters executing without conditions, the application has a single
code path. Therefore, you follow the first left branch in the flowchart shown in the introduction and
you expect that the algorithm execution times have a normal distribution.

Based on the information given by the algorithm developer, you determine that the mean execution
time is 0.0095 s and that the standard deviation is 0.0001 s. To represent the real-time limits, you
also decide to set the min and the max execution times to 0.00925 s and 0.00975 s, respectively.

Set the duration parameters in the Task Manager dialog in the Simulation tab as described above.

5. In the model, click Run to start the simulation. Wait until the simulation completes.



Task

Execution

6. From the model toolbar, open the Data Inspector and inspect the dataReadTask. Zoom in to
inspect the task execution times more closely.

<\ Simulation Data Inspector - untitled* - O d
£ HE- - - A
Q & G|WE(W- 2D | T2 a0
Inspect  Compare W dataReadTask
Filter Signals Running +—
@ NAME LINE
+ Run 1: soc_task_exe...
- dataReadTa, ==
+ dataReadTa: ™= Preempted
oy D
‘ Waiting H - U L H
— 0.960 0.965 0.970 0.975 0.930 0.985 0.9%0 0.995 1.000 1.005
B Core: 0
— 09
&
Archive v
o3
):!ﬁ dataReadTask m dataReadTask ):‘ dataReadTask )& dataReadTask )K dataRead
©, ﬂ
Properties - 0.960 0.965 0.970 0.975 0.980 0.985 0.990 0.995 1.000 1.005

7. Run the following command to perform the statistical analysis of the task execution times. Observe
the Data Inspector run numbers. Modify the command if your run numbers are different.

socTaskTimes('soc task execution',

'Run 1: soc task execution simprofile')

5-67




5 Examples

5-68

Task: dataReadTask

Histogram of the execution times

Runﬂ

025

02

0.15

0.1

0.05

92 93 94 95 956 97 98
1073

Statistics of the execution times
| [Mean  [SD M [Max |
[Run # 1/[0.0093026/0.00010217]/0.00925//0.00973]

Observe that the task durations vary. As expected, the histogram of the task duration times indicates
that the algorithm has one code path. The duration values are clustered around the mean value of
0.0095 s.

8. Close the model without making any changes.
Simulating an Algorithm with Two Code Paths

In this case, you will learn how to model the task duration when the task algorithm has two code
paths and it can be predicted which path will be taken.

Assume that you are developing a video surveillance application. The task is to constantly process
video data to determine if there was intrusion in the system. The algorithm calculates the amount of
scene change between consecutive video data frames. If the scene change exceeds the selected
threshold, such frames are recorded as they may be used as evidence of potential intrusion. Thus,
this algorithm has two code paths. The source code of this algorithm may be represented in the
following form.

void VideoTask(single in[], in length, double threshold)

double energy;
energy = calcSceneChange(in, length);
if (energy > threshold)



Task Execution

recordFrame(in, length);

}
}
Case 2
= soc_task_execution_stepZ_ref
- Duration | VideaTas _l:|1'_'_"L ideoTask |-—-----— M D1[0.033333]
SADfgp =
Task Duration
Estimation k2 E
L
Cutd ——]
Data Source

- Cutd ——]

Maodel

Copyright 2012 The MathWorks, Inc.

1. Open the model. Note the Data Source block that outputs the frames of video data.

2. Click the Model block and observe that the algorithm calculates motion energy between
consecutive frames of data. If the calculated motion energy exceeds the threshold, the Main
Algorithm is executed.

3. Click the Task Manager block. Observe that it sets a timer-driven task VideoTask. This task runs
every 0.33333 s, which is the video frame rate.

4. Click the Simulation tab in Task Manager dialog to define the task duration for simulation.

Since the algorithm has two code paths and it can be predicted which code path will be taken, follow
the second left branch in the flowchart.

Model task duration to depend on motion energy. Depending on whether the motion energy threshold
is exceeded or not, you will assign the task duration with the mean of 75% or 50% of the frame rate,
respectively.

Click the Task Duration Estimation sub